
Weekplan: Searching and Sorting

Philip Bille

Reading

Introduction to Algorithms, Cormen, Rivest, Leisersons and Stein (CLRS): Chapter 2.

Exercises

1 Run by Hand and Properties Solve the following exercises.

1.1 CLRS [w] 2.1-1.

1.2 CLRS [w] 2.1-2.

1.3 CLRS 2.2-3.

1.4 CLRS [w] 2.3-1.

1.5 CLRS [BSc] 2.3-4.

1.6 CLRS 2.3-6.

2 Duplicates and Close Neighbours Let A[0..n− 1] be an array of integers. Solve the following exercises.

2.1 [w] A duplicate in A is a pair of entries i and j such that A[i] = A[j]. Give an algorithm that determines if there is
a duplicate in A in Θ(n2) time.

2.2 Give an algorithm that determines if there is a duplicate in A in Θ(n log n) time. Hint: use merge sort.

2.3 A closest pair in A is a pair of entries i and j such that |A[i]− A[j]| is minimal among all the pairs of entries. Give
an algorithm that finds a closest pair in A in Θ(n log n) time.

3 [BEng†] Implementation of Binary Search Implement the binary search algorithm.

4 Implementation and Correctness of Merge Sort Solve the following exercises.

4.1 [†] Implement the merge algorithm.

4.2 [†] Implement the merge sort algorithm.

4.3 [BSc] Show that merge sort sorts all tables correctly. Hint: use induction.

5 2Sum and 3Sum Let A[0..n− 1] be an array of integers (positive and negative). The array A has a 2-sum if there
exist two entries i and j such that A[i] + A[j] = 0. Similarly, A has a 3-sum if there exists three entries i, j and k such
that A[i] + A[j] + A[k] = 0. Solve the following exercises.

5.1 [w] Give an algorithm that determines if A has a 2-sum in Θ(n2) time.

5.2 Give an algorithm that determines if A has a 2-sum in Θ(n log n) time. Hint: use binary search.

5.3 [w] Give an algorithm that determines if A has a 3-sum in Θ(n3) time.

5.4 Give an algorithm that determines if A has a 3-sum in Θ(n2 log n) time. Hint: use binary search.

5.5 [∗∗] Give an algorithm that determines if A has a 3-sum in Θ(n2) time.

1

6 Selection, Partition, and Quick Sort Let A[0..n− 1] be an array of distinct integers. The integer with rank k in A
is the kth largest integer among the integers in A. The median of A is the integer in A with rank b(n− 1)/2c. Solve the
following exercises.

6.1 Give an algorithm that given a k finds the integer with rank k in A in Θ(n log n) time.

A partition of A is a separation of A into two arrays Alow and Ahigh such that Alow contains all integers from A that are
smaller than or equal to the median of A and Ahigh contains all the integers from A that are larger than the median of A.
Assume in the following that you are given a linear time algorithm to determine the median of an array.

6.2 Give an algorithm to compute a partition of A in Θ(n) time.

6.3 [∗] Give an algorithm to sort A in Θ(n log n) time using recursive partition.

6.4 [∗∗] Give an algorithm that given a k finds the integer with rank k in A in Θ(n) time.

M Mandatory Exercise: Smallest Missing Integer Let A be an array of length n such that each entry of A contains a
unique integer from {1, 2, . . . , 2n}, i.e., half of the integers from the set {1, 2, . . . , 2n} are present in A and the remaining
numbers are missing. We interested in efficient algorithms to compute the smallest missing integer in A, that is, smallest
integer from {1, 2, . . . , 2n}, that does not appear in A. For instance given A = [2,7, 1,8] (n = 4) the smallest missing
integer is 3. Solve the following exercises.

M.1 Give an algorithm that solves the problem in Θ(n) time. Hint: use an extra array of length 2n.

M.2 We now want to solve the problem fast, but also reduce the memory consumption as much as possible. Give an
algorithm that solves the problem in Θ(n2) time and only uses a constant number of extra variables (e.g. 42 int
variables in Java).

M.3 Now consider the case where the integers in A are chosen from the set {1, 2, . . . , n+1} instead of {1,2, . . . , 2n}. Give
an algorithm that solves the modified problem in Θ(n) time and only uses a constant number of extra variables.

2

