Weekplan: Analysis of Algorithms

Philip Bille

Reading

Introduction to Algorithms, Cormen, Rivest, Leisersons and Stein (CLRS): Chapter 3.

Exercises

1 [w] **Asymptotic Growth** Arrange the following functions in increasing asymptotic order, i.e., if f(n) precedes g(n) then f(n) = O(g(n)).

 $n\log n$ n^2 2^n n^3 \sqrt{n} n

2 Θ **-notation** Write the following expressions using Θ -notation.

$n^2 + n^3/2$	$8\log_2^7 n + 34\log_2 n + \frac{1}{1000}n$
$2^{n} + n^{4}$	$2^n7 + 5\log_2^3 n$
$\log_2 n + n\sqrt{n}$	$n(n^2-18)\log_2 n$
n(n-6)	$n\log_2^4 n + n^2$
$4\sqrt{n}$	$n^3 \log_2 n + \sqrt{n} \log_2 n$

3 Loopy Loops Analyze the running time of the following loops as a function of n and express the result in Θ -notation.

LOOP1(n)	LOOP2(n)	LOOP3(n)
i = 1	i = 1	for <i>i</i> = 1 to <i>n</i> do
while $i \leq n$ do	while $i \leq n$ do	j = 1
print "*"	print "*"	while $j \leq n$ do
$i = 2 \cdot i$	$i = 5 \cdot i$	print "*"
end while	end while	$j = 2 \cdot j$
		end while
		end for

4 Asymptotic Statements Which of the following statements are true?

- **5 Doubling Hypothesis** Solve the following exercises.
- **5.1** [*w*] The algorithm *A* runs in exactly $7n^3$ time on an input of size *n*. How much slower does it run if the input size is doubled?
- **5.2** [BEng] The algorithm *B* runs in time respectively 5, 20, 45, 80 and 125 seconds on input of sizes 1000, 2000, 3000, 4000 and 5000. Estimate how long the running time will be of *B* on an input of size 6000. What is the running time of *B* expressed using Θ -notation?
- **5.3** The algorithm *C* runs 3 seconds slower each time the size of the input is doubled. What is the running time of *C* expressed using Θ -notation?
- 6 Asymptotic Properties Solve the following exercises.
- 6.1 CLRS 3.1-1
- 6.2 CLRS 3.1-3
- 6.3 CLRS 3.1-4
- **6.4** [BSc*] Show that $\log_2(n!) = \Theta(n \log n)$. *Hint:* Start by showing the upper bound.
- 6.5 [BSc*] CLRS 3-2

7 Generalized Merge Sort Professor Gørtz suggests the following variant of merge sort called 3-merge sort. 3-merge sort works exactly like normal merge sort except one splits the array into 3 parts instead of 2 that are then recursively sorted and merged. Solve the following exercises.

- 7.1 Show it is possible to merge 3 sorted arrays in linear time.
- 7.2 Analyze the running time of 3-merge sort.
- **7.3** [*] Generalize the algorithm and the analysis of 3-merge sort to k-merge sort for k > 3. Is k-merge sort an improvement over the standard 2-merge sort?

8 Maximal Subarray Let A[0..n-1] be an array of integers (both positive and negative). A maximal subarray of A is a subarray A[i..j] such that the sum $A[i] + A[i+1] + \cdots + A[j]$ is maximal among all subarrays of A. Solve the following exercises.

- **8.1** [w] Give an algorithm that finds a maximal subarray of A in $O(n^3)$ time.
- **8.2** Give an algorithm that finds a maximal subarray of *A* in $O(n^2)$ time. *Hint:* Show it is possible to compute the sum of any subarray in O(1) time.
- **8.3** [**] Give a divide and conquer algorithm that finds a maximal subarray of A in $O(n \log n)$ time.
- **8.4** [**] Give an algorithm that finds a maximal subarray of A in O(n) time.

M Mandatory Exercise: Complexity Solve the following exercises.

M.1 Arrange the following functions in increasing asymptotic order, i.e., if f(n) precedes g(n) then f(n) = O(g(n)).

$$5000 \log_2 n \qquad \frac{n}{\log_2 n} \qquad \frac{1}{4}n^2 - 10000n \qquad n^{1/100} \qquad 4n \log_2 n \qquad \sqrt{n} + 7 \qquad 8n$$

M.2 State the running time of each of the following algorithms. Your asymptotic bound should be as tight as possible.

ALG1(n)	ALG2(n)	ALG3(n)
for $i = 1$ to n do	for $i = 1$ to n do	for $i = 1$ to n do
j = 1	i = i + 1	for $j = 1$ to n do
while $j \leq n$ do	end for	k = j
j = j + 2	j = 1	while $k \leq n$ do
end while	while $j \leq n$ do	$k = k \cdot 3$
end for	j = j + 1	end while
	end while	end for
		end for