
Weekplan: Analysis of Algorithms

Philip Bille

Reading

Introduction to Algorithms, Cormen, Rivest, Leisersons and Stein (CLRS): Chapter 3.

Exercises

1 [w] Asymptotic Growth Arrange the following functions in increasing asymptotic order, i.e., if f (n) precedes g(n)
then f (n) = O(g(n)).

n log n n2 2n n3 p
n n

2 Θ-notation Write the following expressions using Θ-notation.

n2 + n3/2

2n + n4

log2 n+ n
p

n

n(n− 6)

4
p

n

8 log7
2 n+ 34 log2 n+

1
1000

n

2n7+ 5 log3
2 n

n(n2 − 18) log2 n

n log4
2 n+ n2

n3 log2 n+
p

n log2 n

3 Loopy Loops Analyze the running time of the following loops as a function of n and express the result inΘ-notation.

LOOP1(n)
i = 1
while i ≤ n do

print "?"
i = 2 · i

end while

LOOP2(n)
i = 1
while i ≤ n do

print "?"
i = 5 · i

end while

LOOP3(n)
for i = 1 to n do

j = 1
while j ≤ n do

print "?"
j = 2 · j

end while
end for

4 Asymptotic Statements Which of the following statements are true?

1
20

n2 + 100n3 = O(n2)

log2 n+ n= O(n)

2log2 n = O(n)

n3(n− 1)/5= Θ(n3)

log2
2 n+ n= Θ(n)

n3

1000
+ n+ 100= Ω(n2)

2n + n2 = Ω(n)
log4 n+ log16 n= Θ(log n)

n1/4 + n2 = Θ(n)

2log4 n = Θ(
p

n)

1

5 Doubling Hypothesis Solve the following exercises.

5.1 [w] The algorithm A runs in exactly 7n3 time on an input of size n. How much slower does it run if the input size
is doubled?

5.2 [BEng] The algorithm B runs in time respectively 5,20, 45,80 and 125 seconds on input of sizes 1000, 2000,3000, 4000
and 5000. Estimate how long the running time will be of B on an input of size 6000. What is the running time of
B expressed using Θ-notation?

5.3 The algorithm C runs 3 seconds slower each time the size of the input is doubled. What is the running time of C
expressed using Θ-notation?

6 Asymptotic Properties Solve the following exercises.

6.1 CLRS 3.1-1

6.2 CLRS 3.1-3

6.3 CLRS 3.1-4

6.4 [BSc∗] Show that log2(n!) = Θ(n log n). Hint: Start by showing the upper bound.

6.5 [BSc∗] CLRS 3-2

7 Generalized Merge Sort Professor Gørtz suggests the following variant of merge sort called 3-merge sort. 3-merge
sort works exactly like normal merge sort except one splits the array into 3 parts instead of 2 that are then recursively
sorted and merged. Solve the following exercises.

7.1 Show it is possible to merge 3 sorted arrays in linear time.

7.2 Analyze the running time of 3-merge sort.

7.3 [∗] Generalize the algorithm and the analysis of 3-merge sort to k-merge sort for k > 3. Is k-merge sort an
improvement over the standard 2-merge sort?

8 Maximal Subarray Let A[0..n−1] be an array of integers (both positive and negative). A maximal subarray of A is
a subarrray A[i.. j] such that the sum A[i]+A[i+1]+ · · ·+A[j] is maximal among all subarrays of A. Solve the following
exercises.

8.1 [w] Give an algorithm that finds a maximal subarray of A in O(n3) time.

8.2 Give an algorithm that finds a maximal subarray of A in O(n2) time. Hint: Show it is possible to compute the sum
of any subarray in O(1) time.

8.3 [∗∗] Give a divide and conquer algorithm that finds a maximal subarray of A in O(n log n) time.

8.4 [∗∗] Give an algorithm that finds a maximal subarray of A in O(n) time.

M Mandatory Exercise: Complexity Solve the following exercises.

M.1 Arrange the following functions in increasing asymptotic order, i.e., if f (n) precedes g(n) then f (n) = O(g(n)).

5000 log2 n
n

log2 n
1
4

n2 − 10000n n1/100 4n log2 n
p

n+ 7 8n

M.2 State the running time of each of the following algorithms. Your asymptotic bound should be as tight as possible.

ALG1(n)
for i = 1 to n do

j = 1
while j ≤ n do

j = j + 2
end while

end for

ALG2(n)
for i = 1 to n do

i = i + 1
end for
j = 1
while j ≤ n do

j = j + 1
end while

ALG3(n)
for i = 1 to n do

for j = 1 to n do
k = j
while k ≤ n do

k = k · 3
end while

end for
end for

2

