- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3

Philip Bille

Algorithms and Data Structures

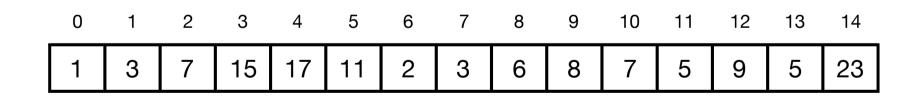
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3

Algorithms and Data Structures

- Algorithmic problem. Precisely defined relation between input and output.
- Algorithm. Method to solve an algorithm problem.
 - Discrete and unambiguous steps.
 - Mathematical abstraction of a program.
- Data structure. Method for organizing data to enable queries and updates.

Example: Find max

- Find max. Given a table A[0..n-1], find an index i, such that A[i] is maximal.
 - Input. Table A[0..n-1].
 - Output. An index i such that $A[i] \ge A[j]$ for all indices $j \ne i$.
- Algorithm.
 - Process A from left-to-right and maintain value and index of maximal value seen so far.
 - Return index.



Description of Algorithms

- Natural language.
 - Process A from left-to-right and maintain value and index of maximal value seen so far.
 - Return index.
- Program.
- Pseudocode.

public static int findMax(int[] A) {
 int max = 0;
 for(i = 0; i < A.length; i++)
 if (A[i] > A[max]) max = i;
 return max;
}

```
FINDMax(A, n)
max = 0
for i = 0 to n-1
    if (A[i] > A[max]) max = i
    return max
```

- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3

Peaks

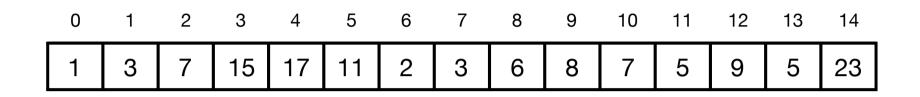
- Peak. A[i] is a peak if A[i] is as least as large as it's neighbors:
 - A[i] is a peak if A[i-1] \leq A[i] \geq A[i+1] for i \in {1, ..., n-2}
 - A[0] is a peak if A[0] ≥ A[1].
 - A[n-1] is a peak if A[n-2] \leq A[n-1].

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	3	7	15	17	11	2	3	6	8	7	5	9	5	23

- Peak finding. Given a table A[0..n-1], find an index i such that A[i] is a peak.
 - Input. A table A[0..n-1].
 - Output. An index i such that A[i] is a peak.

- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3

• Algorithm 1. For each entry check if it is a peak. Return the index of the first peak.



• Pseudocode.

```
PEAK1(A, n)

if A[0] \geq A[1] return 0

for i = 1 to n-2

if A[i-1] \leq A[i] \geq A[i+1] return i

if A[n-2] \leq A[n-1] return n-1
```

• Challenge. How do we analyze the algorithm?

Theoretical Analysis

- Running time/time complexity.
 - T(n) = number of steps that the algorithm performs on input of size n.
- Steps.
 - Read/write to memory (x := y, A[i], i = i + 1, ...)
 - Arithmetic/boolean operations (+, -, *, /, %, &&, ||, &, |, ^, ~)
 - Comparisons (<, >, =<, =>, =, ≠)
 - Program flow (if-then-else, while, for, goto, funktion call, ..)
- Worst-case time complexity. Maximal running time over all input of size n.

Theoretical Analysis

• Running time. What is the running time T(n) for algorithm 1?

```
PEAK1(A, n)

if A[0] \geq A[1] return 0

for i = 1 to n-2

if A[i-1] \leq A[i] \geq A[i+1] return i

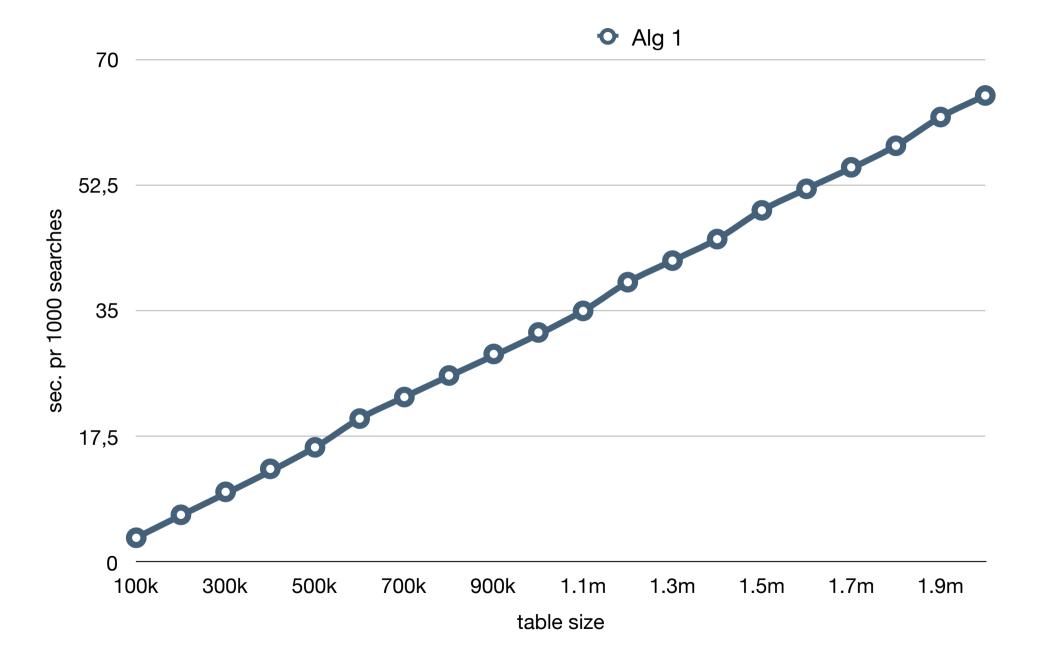
if A[n-2] \leq A[n-1] return n-1
```

c₁ (n-2)·c₂

C3

 $T(n) = c_1 + (n-2) \cdot c_2 + c_3$

- T(n) is a linear function of n: T(n) = an + b
- Asymptotic notation. $T(n) = \Theta(n)$
- Experimental analysis.
 - What is the experimental running time of algorithm 1?
 - · How does the experimental analysis compare to the theoretical analysis?

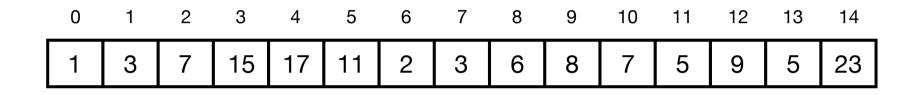


Peaks

- Algorithm 1 finds a peak in $\Theta(n)$ time.
- Theoretical and experimental analysis agrees.
- Challenge. Can we do better?

- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3

- Observation. A maximal entry A[i] is a peak.
- Algorithm 2. Find a maximal entry in A med FINDMAX(A, n).



```
FINDMax(A, n)
max = 0
for i = 0 to n-1
    if (A[i] > A[max]) max = i
    return max
```

Theoretical Analysis

• Running time. What is the running time T(n) for algorithm 2?

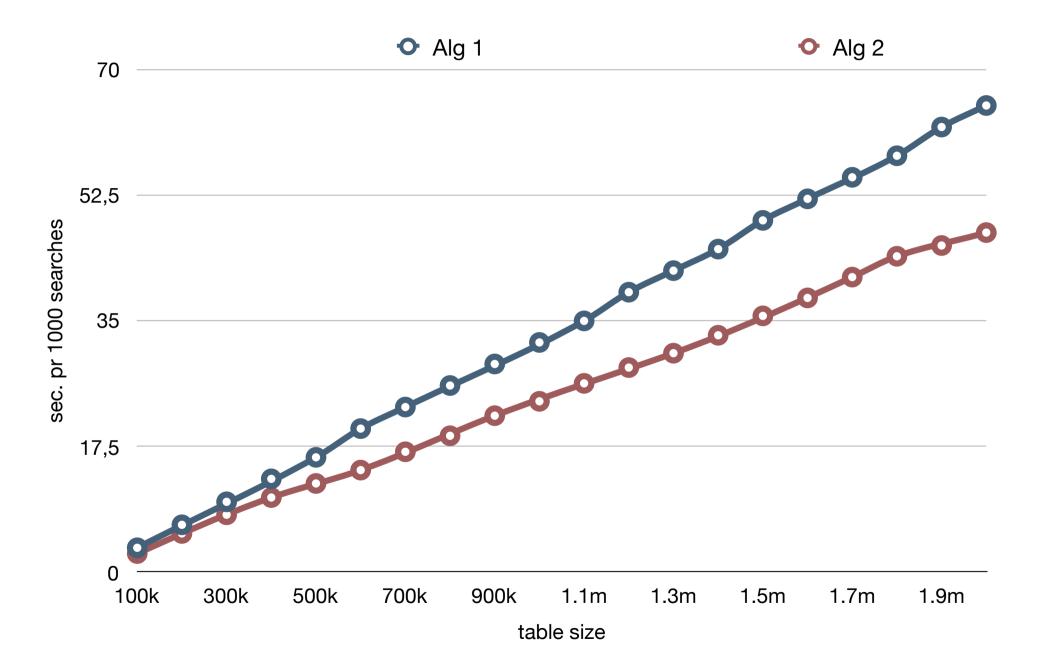
FINDMax(A, n)

$$max = 0$$

for i = 0 to n-1
if (A[i] > A[max]) max = i
return max
 C_4
 $n \cdot c_5$
 C_6

 $T(n) = c_4 + n \cdot c_5 + c_6 = \Theta(n)$

• Experimental analysis. Better constants?

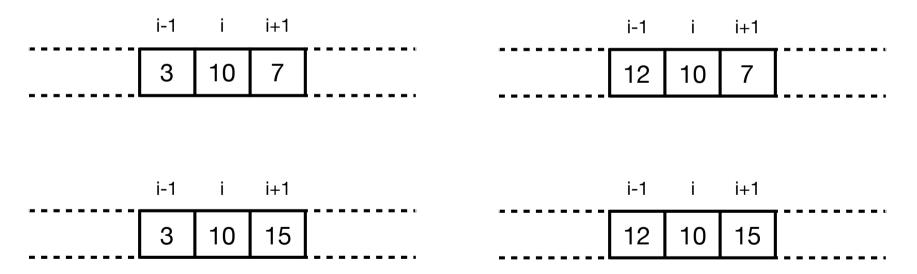


Peaks

- Theoretical analysis.
 - Algorithm 1 and 2 find a peak in $\Theta(n)$ time.
- Experimental analysis.
 - Algorithm 1 and 2 run in $\Theta(n)$ time in practice.
 - Algorithm 2 is a constant factor faster than algorithm 1.
- Challenge. Can we do significantly better?

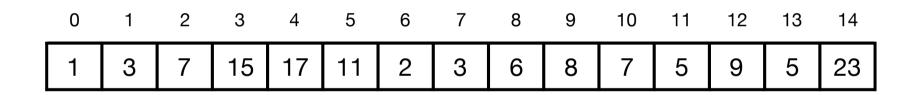
- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3

- Clever idea.
 - Consider any entry A[i] and it's neighbors A[i-1] and A[i+1].
 - Where can a peak be relative to A[i]?
 - Neighbor are $\leq A[i] \Longrightarrow A[i]$ is a peak.
 - Otherwise A is increasing in at least one direction ⇒ peak must exist in that direction.



• Challenge. How can we turn this into a fast algorithm?

- Algorithm 3.
 - Consider the middle entry A[m] and neighbors A[m-1] and A[m+1].
 - If A[m] is a peak, return m.
 - Otherwise, continue search recursively in half with the increasing neighbor.



- Algorithm 3.
 - Consider the middle entry A[m] and neighbors A[m-1] and A[m+1].
 - If A[m] is a peak, return m.
 - Otherwise, continue search recursively in half with the increasing neighbor.

```
PEAK3(A,i,j)

m = L(i+j)/2)]

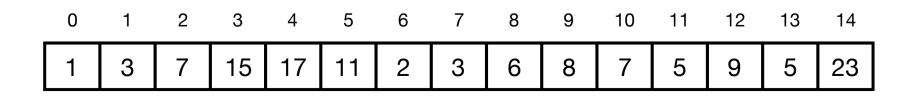
if A[m] ≥ neighbors return m

elseif A[m-1] > A[m]

return PEAK3(A,i,m-1)

elseif A[m] < A[m+1]

return PEAK3(A,m+1,j)
```



- Running time.
- A recursive call takes constant time.
- How many recursive calls?

```
PEAK3(A,i,j)

m = L(i+j)/2)J

if A[m] ≥ neighbors return m

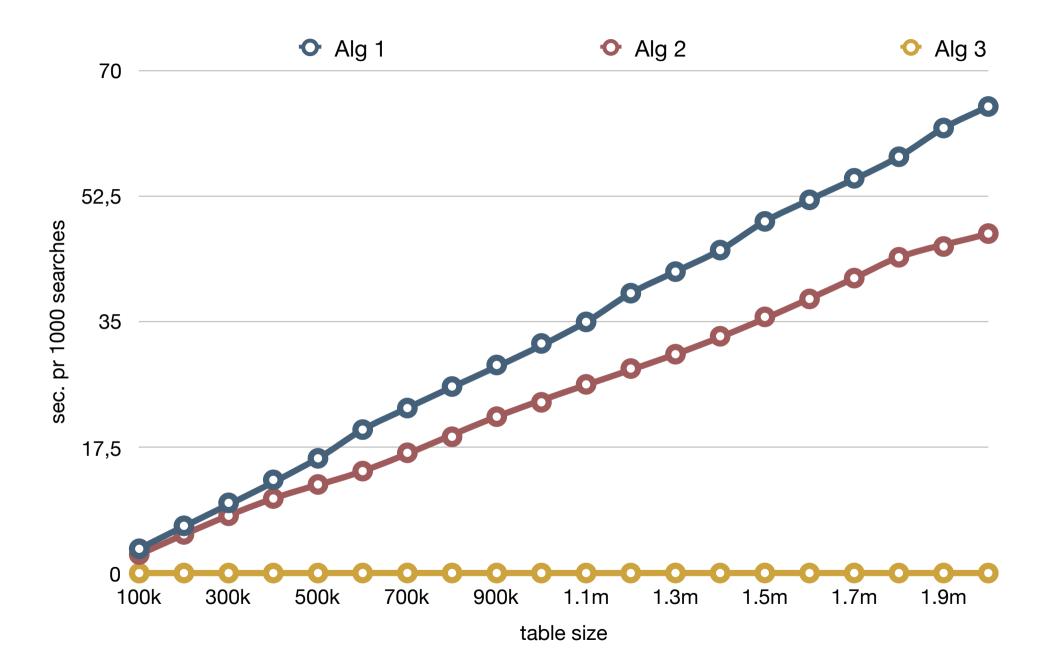
elseif A[m-1] > A[m]

return PEAK3(A,i,m-1)

elseif A[m] < A[m+1]

return PEAK3(A,m+1,j)
```

- A recursive call halves size of interval. We stop when table has size 1.
 - 1. recursive call: n/2
 - 2. recursive call: n/4
 -
 - kth. recursive call: n/2^k
 -
- \implies After ~log₂ n recursive call table has size \leq 1.
- \implies Running time is $\Theta(\log n)$
- Experimental analysis. Significantly better?



Peaks

- Theoretical analysis.
 - Algorithm 1 and 2 finds a peak in $\Theta(n)$ time.
 - Algorithm 3 finds a peak in $\Theta(\log n)$ time.
- Experimental analysis.
 - Algorithm 1 and 2 run in $\Theta(n)$ time in practice.
 - Algorithm 2 is a constant factor faster than algorithm 1.
 - Algorithm 3 is much, much faster than algorithm 1 and 3.

- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3