Weekplan: Introduction to Data Structures

The 02105402326 DTU Algorithms Team

Reading

Introduction to Algorithms, Cormen, Rivest, Leisersons and Stein (CLRS): Introduction to Part III + Chapter 10.

Exercises
1 Stacks and Queues
1.1 CLRS [w] 10.1-1.
1.2 Exercise 5.1 in the exam set from 2011.
1.3 CLRS 10.1-2.
1.4 CLRS [w] 10.1-3.
1.5 CLRS 10.1-6.

2 Algorithms on Linked Lists Look at the algorithms FOO and BAR and the linked list below. Solve the following
exercises.

Foo(head) BAR(x,s)

x = head if x == null then

c=0 return s

while x # null do else
X = x.next return BAR(x.next,s + x.key)
c=c+1 end if

end while

return c

head

\
2 e 21 s e s e -3 s e I

2.1 [w] Run Foo(head) by hand.
2.2 [w] Explain what FOO computes.
2.3 Run BAR(head,0) by hand.

2.4 Explain what BAR does.



3 Implementation of Linked Lists Assume x is an element in a singly linked list as described in the lecture. Solve
the following exercises.

3.1 [w] Assume x is not the last element in the list. What is the result of the following code snippet?
X.next = x.next.next;
3.2 [w] Let t be a new element that is not already in the list. What is the result of the following code snippet?

t.next = x.next;
X.next t;

3.3 [w] Suppose we now swap the order of the statements:

x.next = t;
t.next = x.next;

What happens now? The same as above?

4 Implementation of Stacks and Queues Solve the following exercises.
4.1 [1] Implement a stack that can contain integers using a singly linked list.

4.2 [1] Implement a queue that can contain integers using a singly linked list.

5 Sorted Linked Lists Let L be a singly linked list consisting of n integers in sorted order. Solve the following exercises.
5.1 Give an algorithm to insert a new integer in L such that the list is still sorted afterwards.

5.2 Professor Ggrtz suggests one can improve the insertion algorithm by using binary search. Is she right?

6 List Reversal Give an algorithm to reverse a singly linked list, ie. produces a singly linked list with the elements in
the reversed order. Your algorithm should run in ©(n) time and not use more than constant extra space (in addition to
the list).

7 Dynamic Arrays and Stacks We are interested in implementing a stack using a dynamic array without a maximum
size for the array in the beginning. Solve the following exercises.

7.1 [x] Generalize dynamic arrays to also support stacks that shrinks (ie. supports both PUsH and PoP operations).
The running time of any sequence of n operations must be ©(n) and at any point in time your solution should use
linear time in the number of elements currently in the stack.

7.2 [+x] Show how one can obtain O(1) time per stack operation using dynamic arrays and linear space in the number
of elements currently in the stack. Only consider growing stacks and thus ignore Pop. Hint: Consider how the
work can be evenly distributed over all operations.



