Introduction to Data Structures

+ Data structures

- Stacks and Queues
+ Linked Lists

» Dynamic Arrays

Philip Bille

Introduction to Data Structures

« Data structures

Data Structures

« Data structure. Method for organizing data for efficient access, searching,
manipulation, etc.

+ Goal.
 Fast.
+ Compact
« Terminology.
+ Abstract vs. concrete data structure.
» Dynamic vs. static data structure.

Introduction to Data Structures

- Stacks and Queues

Stack

« Stack. Maintain dynamic sequence (stack) S supporting the following operations:

* PUSH(x): add x to S.
+ PoP(): remove and return the most recently added element in S.
« ISEMPTY(): return true if S is empty.

PUSH(28) Popr() PoP() PUSH(7)

Queue

+ Queue. Maintain dynamic sequence (queue) Q supporting
the following operations:
4 115
+ ENQUEUE(x): add x to Q. n..
+ DEQUEUE(): remove and return the first added element in ENQUEUE(T)
Q.

» ISEMPTY(): return true if S is empty.

Applications

« Stacks.
« Virtual machines
» Parsing
+ Function calls
» Backtracking
+ Queues.
+ Scheduling processes
+ Buffering
+ Breadth-first searching

Stack Implementation

+ Stack. Stack with capacity N
+ Data structure.
+ Array S[0..N-1]
* Index top. Initially top = -1
» Operations.
+ PUSH(x): Add x at S[top+1], top =top + 1
+ POP(): return S[top], top = top - 1
+ ISEMPTY(): return true if top = -1.
+ Check for overflow and underflow in PusH and Pop.

|16I18I4I3I2T8I | [[]]

top

Stack Implementation

I16I18I4I3I218I | [[]

top

« Time
+ PusH in ©(1) time.
« Porin ©O(1) time.
+ ISEMPTY in ©(1) time.
+ Space.
+ O(N) space.
* Limitations.
+ Capacity must be known.
» Wasting space.

Queue Implementation

* Queue. Queue with capacity N.
+ Data structure.
+ Array Q[0..N-1]
+ Indices head and tail and a counter.
» Operations.
+ ENQUEUE(x): add x at Sftail], update count og tail cyclically.
+ DEQUEUE(): return Q[head], update count og head cyclically.
* ISEMPTY(): return true if count = 0.
+ Check for overflow and underflow in DEQUEUE and ENQUEUE.

count =5 N=10

L[[efafssfriee] | | |
! !

head tail

Queue Implementation

count =5 N=10

L[lslafwsfe]ee] | | |
! !

head tail

+ Time.
+ ENQUEUE in ©(1) time.
+ DEQUEUE in ©(1) time.
+ ISEMPTY in ©(1) time.
+ Space.
+ O(N) space.
+ Limitations.
+ Capacity must be known.

» Wasting space.

Stacks and Queues

+ Stack.

N=10
+ Time. PusH, PoP, ISEMPTY in O(1) time. [6]we]aaes] TTTT 1
+ Space. O(N)
top
* Queue. count=5 N=10
+ Time. ENQUEUE, Dequeue, ISEMPTY inO(1)time. [| [sfafts]1]2] | | |
+ Space. O(N) hefad ‘L

+ Challenge. Can we get linear space and constant time?

Introduction to Data Structures

* Linked Lists

Linked Lists

+ Linked lists.
+ Data structure to maintain dynamic sequence of elements in linear space.
» Sequence order determined by pointers/references called links.
+ Fast insertion and deletion of elements and contiguous sublists.
+ Singly-linked vs doubly-linked.

head

\
L7 LA el A sl A el A s o]

head

T I = PR R = P E s = P

Linked Lists

+ Doubly-linked lists in Java.

class Node {
int key;
Node next;
Node prev;

}

Node head = new Node();
Node b = new Node();
Node ¢ = new Node();

head.key = 7;
b.key = 42;
c.key = 18;

head.prev = null;
head.next = b;
b.prev = head;
b.next = c;
c.prev = b;
c.next = null;

head b

\
|nu|l| 7 |nu||| |nu||| 42 |nu|l| |nu|l| 18 |nu|l|
head

\ \
[nun] 7 [«F- [a2] «FL- |18 [nui

Linked Lists

» Simple operations.
» SEARCH(head, k): return node with key k. Return null if it does not exist.
+ INSERT(head, x): insert node x in front of list. Return new head.
» DELETE(head, x): delete node x in list.

head

\
L1 el A Mosl A Mesl A s fou]

head

\
T I = R R I P E s = P

Linked Lists

+ Operations in Java.

Node Insert(Node head, Node x) {
x.prev = null;

Node Search(Node head, int value) { x.next = head;
Node x = head,; head.prev = x;
while (x != null) { return x;

if (x.key == value) return x; ¥
X = X.nhext;

Node Delete(Node head, Node x) {
return null; if (x.prev != null)

1 X.prev.next = x.next;

else head = x.next;

if (x.next != null)
x.next.prev = x.prev;

return head;

head }

I 2 I R) I R) s

+ Ex. Let p be a new with key 10 and let g be node with key 23 in list. Trace execution
of Search(head, 18), Insert(head,p) og Delete(head,q).

Linked Lists

head

L7 LA el A el A ezl s]

head

0 I s 2 s 2 = P s

» Time.
* SEARCH in ©(n) time.
+ INSERT and DELETE in ©(1) time.

» Space.
+ 6(n)

Stack and Queue Implementation

« Ex. Consider how to implement stack and queue with linked lists efficiently.

« Stack. Maintain dynamic sequence (stack) S supporting the following operations:
» PUSH(x): add x to S.
« PoP(): remove and return the most recently added element in S.

+ ISEMPTY(): return true if S is empty.

* Queue. Maintain dynamic sequence (queue) Q supporting the following operations:
+ ENQUEUE(x): add x to Q.
+ DEQUEUE(): remove and return the first added element in Q.
+ ISEMPTY(): return true if S is empty.

Stack and Queue Implementation

+ Stacks and queues using linked lists

- Stack.
+ Time. PuUsH, PopP, ISEMPTY in ©O(1) time.
+ Space. O(n)

* Queue.
» Time. ENQUEUE, Dequeue, ISEMPTY in ©(1) time.
+ Space. O(n)

Linked Lists

« Linked list. Flexible data structure to

maintiain sequence of elements. root — null
« Other linked data structures Cyclic lists, 15
trees, graphs, ... / | \
{ L N N
- — ~ ”
@ // Y | \\ nulllnull
(20) 1 ~ 14
) () nul \ 2 [
¥
e @ / \
3 11
@ nuIIlnuII nulll ~— ~
13
nulllnull

Introduction to Data Structures

* Dynamic Arrays

Stack Implementation with Array

+ Challenge. Can we implement a stack efficiently with arrays?
+ Do we need a fixed capacity?
+ Can we get linear space and constant time?

Dynamic Arrays

+ Goal.
+ Implement a stack using arrays in ©(n) space for n elements.
+ As fast as possible.
+ Focus on PUSH. Ignore POP and ISEMPTY for now.

+ Solution 1
+ Start with table of size 1.
* PUSH(X):
+ Allocate new table of size + 1.
» Move all elements to new table.
+ Delete old table.

Dynamic Arrays

* PUSH(X):
+ Allocate new table of size + 1.
* Move all elements to new table.
+ Delete old table.

+ Time. Time for n PUSH operations?
« ith PusH takes O(j) tid.
+ = totaltimeis1+2+3+4 +... + n=0(n?

+ Space. ©(n)

+ Challenge. Can we do better?

Dynamic Arrays

+ Idea. Only copy elements some times

+ Solution 2.
+ Start with table of size 1.
* PUSH(X):
+ If table is full:
+ Allocate new table of twice the size.
+ Move all elements to new table.
+ Delete old table.

Dynamic Arrays

* PUSH(x):
« If table is full:
+ Allocate new table of twice the size.
» Move all elements to new table.
» Delete old table.

+ Time. Time for n PUSH operations?
« PUsH 2k takes O(2K) time.
+ All other PusH take ©(1) time.

Dynamic Arrays

» Stack with dynamic table.

» n PUsH operations in ©(n) time and plads.

+ Extends to n PusH, PoP og ISEMPTY operations in ©(n) time.

» Time is amortized O(1) per operation.

» With more clever tricks we can deamortize to get ©(1) worst-case time per

operation.

* Queue with dynamic array.
+ Similar results as stack.
+ Global rebuilding.

* =totaltimeis1+2+4+8+ 16+ ... + 2Uogni + n = O(n)
» Dynamic array is an example of global rebuilding.

* Space. ©(n) » Technique to make static data structures dynamic.

Stack and Queues

Data structure PusH Pop ISEMPTY Space
Array with capacity N o) o) o) O(N)
Linked List o) e(1) o(1) o(M)
Dynamic Array 1 o(n)t o)t o(1) O(n)
Dynamic Array 2 o)t o) o(1) O(n)
Dynamic Array 3 (1) (1) (1) O(n)

1 = amortized

Introduction to Data Structures

+ Data structures

« Stacks and Queues
« Linked Lists

* Dynamic Arrays

