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Dictionaries

Dictionary: Maintain a dynamic set S. Every element x has a key
x.key from a universe U, along with satellite data x.data.
Operations:

search(k) determine whether an element x with x.key = k
exists, and return it.

insert(x) add x to the set S.
delete(x) remove x from the set S.
insert(\)

*

search ()

search( )




Dictionaries

Applications
» Basic data structure for representing a set
» Used in many algorithms and data structures

Challenge How can we solve the dictionary problem using current
techniques?



Dictionaries - solution with a chained list - too slow!

e NICIZZAEEN

Time:
search(k) - O(|S]) time (search through all elements)
insert(x) - O(1) time (insert at head of list)
delete(x) - O(1) time to change pointers.

Space: O(|S|) space.



Dictionaries - solution with an array - too large!

» As an array of size U
» Save x on the position A[x.key] in A.
search(k) - O(1) time to return A[K]
insert(x) - O(1) time to set A[x.key] = x
delete(x) - O(1
Space: O(|U|)

Exercise: When is this a problem?

O(1) time to set A[x.key] = null.
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Dictionaries - two dissatisfactory solutions

Data structure | Search | Insert | Delete | Space
Chained ist | O(]S]) | 0(1) | o®) | o(S])
Array o(1) |[0(1) |o(1) |o(u)

Challenge: Can we do better?
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Hashing with chaining

Idea: Use a hash function h: U — {0,..., m}
where m = O(|S]).

» Maintain an array A of size m,

» Each entry of the array points to a
chained list,

» The element x is stored somewhere in the
chained list at A [h(x.key)] .

Collision: When m < |U]|, then even when
x.key # y.key, we risk h(x.key) = h(y.key).
We call this a collision.

We want h such that there are few collisions.
Hash (vb tr) “to confuse, muddle, or mess up".
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Hashing with chaining

How it works.
» insert(d)
h(&) =
> insert(N\)
h(\) =7
» search(+%
h(-%) = 15
> search(¥)
h(¥) =2
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Hashing with chaining

How it works.
search(k) - search through A[k] 's list for k.
insert(x) - insert x in A[h(x.key)] 's list.
delete(x) - delete x from list.
Time:
search(k) - O(|list’s length|) time
insert(x) - O(1) time (at head of list)

delete(x) - O(1) time to change pointers.

Plus the time it takes to calculate h(x.key)
Space:
O(m +15]) = O(|S])
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Hashing with chaining - Exercise

Insert the following keys K in a hash table of size 9
using hashing with chaining using the hash function

h(k) =k mod 9
K =5,28,19, 15, 20,33, 12,17, 10

How long is the longest list?
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Uniform hashing

Imagine there's a
uniform hash function h: U — {0,...,m — 1}.



Uniform hashing

Definition (Load factor)
a = |S|/m. The average length of lists.
m=0(|S|) = a = 0(1).
Dream world: Imagine there's a hash function h that is
» computable in O(1) time, and
» For any x € U: h(x) is independent uniformly
random in {0,...,m—1}.
Then:
» Expected length of list = a.
» = search(k) in O(a) = O(1) time.
» Search, Insert, Delete: O(1) time.
O(|S]) space.
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Dictionaries - two dissatisfactory and one imaginary

Data structure Search | Insert | Delete | Space
Chained list o(lS|) | 0(1) 0o(1) o(|S))
Array o) |o@) |o@ |o(u)
Hashing with chaining | O(1)T | O(1) O(1) o(|S))

t: Expected running time. Assuming uniform hashing.

Challenge: Find a real-life hash function that works.
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Universal hashing

Goal: Avoid collisions h(y) = h(x) for x # y.
If h(x) and h(y) are independent uniform random, then

Prih(x) = h(y)] = 1/m
Definition (Universal hashfunction)
h is universal if for any x,y € U with x # y,
Prih(x) = h(y)] < 1/m
If his universal, what is the expected size of the list at A[h(x)]?

Bl

> Pripy) =h(x)] <1+ > %glju;:oa)

y€eS yeS\{x}

All operations in (expected) O(1) time!



Hash function: multiply-mod-prime

pis a prime > |U].

@00

ha b(x ((ax+b) mod p) mod m

v

Select ae {1,...,m—1}and b€ {0,...,m—1}
independently uniformly at random

Use h(x) = h, p(x) = 71'(7737[)(X)) as hash function.

hap is collision free because a # 0

v

v

v

m introduces collisions when m < p
Given x # y, then Pr[h(x) = h(y)] < *

m
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Hash function: multiply-shift

Assume |U| and m are powers of 2.
Eg|U| =2% =25 and m = 2L.
w-1 w-L

ax| | (@)>>(w-L) |

v

Select odd a € {1,3,5,...,|U| — 1}
ha(x) = [(ax mod 2%)/2"~L|
Implementation: return (a*x)»(64-L);
Prlha(x) = ha(y)] < %
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Analogies

Must linear-search through
drawer no. 8 to find &2

oﬂ23456789".h

/& /’i@%l NG lé?

Linear Probing: Like a shelf.

No space for N\ at h(N) =7,

So insert *\ at the nearest vacant
spot to the right.



Linear probing

HENFSEENENEENZEE

0123 456 7 8 9101112131415

» Maintain an array of size m
» |dea: Save x in A[x.key]
» Challenge: Collisions.



Linear probing

HENFSEENENEENZEE

0123 456 7 8 9101112131415

» Maintain an array of size m
» A cluster is a sequence of consecutive non-empty positions.

» Store x in A[x.key], or somewhere in the cluster containing
x.key, to the right of x.key.

Example:

Insert(&). h(&) = 8.

Delete(&). h(&) = 7. h(N)=7.

Search(¥). h(®) = 2.

Space: m = O(|S|). Time: O(|cluster|). < O(1) for some hash
functions h.



Linear Probing

Huge advantage: Linear Probing is cache efficient.

Chaining

Linear

probing

0 0.2 0.4 0.6 0.8 1
Load factor

Average cache misses
per lookup
W
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