Weekplan: Binary Search Trees

The 02105+02326 DTU Algorithms Team

Reading

Introduction to Algorithms, Cormen, Rivest, Leisersons and Stein (CLRS): Chapter 12 excluding 12.4.

Exercises

1 Simulation and Properties

1.1 [*w*] Which of the following trees are binary search trees?

1.2 [w] Where are the elements with respectively the smallest and largest key located in a binary search tree?

- **1.3** [*w*] CLRS 12.1-1.
- **1.4** [*w*] Specify the pre-order, in-order og post-order sequence of keys for the tree in (b)
- 1.5 CLRS 12.1-2.
- 1.6 CLRS 12.1-3. Write pseudo code for the algorithm.
- 1.7 CLRS 12.2-1.
- 1.8 [BSc] CLRS 12.2-5. *Hint:* prove by contradiction.

2 Leafs and Heights Let *T* be a binary tree with *n* nodes and root *v*.

- **2.1** Give a recursive algorithm that given v computes the number of leafs in *T*. Write pseudo code for your solution.
- **2.2** Give a recursive algorithm that given v computes the height of *T*. Write pseudo code for your solution.
- 2.3 [†] Implement your solution to compute the height.
- 3 More Recursion on Trees Solve exercise 4 in the exam set from 2011.

4 Traversal of Binary Search Trees

- **4.1** Give an algorithm that given a binary search tree *T* with a key in each node, determines if *T* satisfies the binary search tree property.
- **4.2** Give an algorithm that given a binary search tree *T* constructs a *reversed binary search tree* T^R . T^R should be a binary search tree with the same keys as *T*. For each node *v* in T^R the nodes in the left subtree must be $\ge v$ and the keys in the right subtree must be $\le v$.
- **4.3** [*] Give an algorithm that given two binary search trees T_1 and T_2 constructs a single binary search tree with all the elements from both T_1 and T_2 .

5 Perfectly Balanced Binary Search Trees Let *A* be a sorted array of $n = 2^{h+1} - 1$ distinct numbers. Give a sequence of insertions of the numbers in *A* into a binary search tree *T* such that *T* becomes a complete binary search tree of height *h*.

6 Pre-Order Traversal [†] Implement a recursive algorithm for pre-order traversal of a binary tree.

7 Even More Recursion on Trees Solve exercise 4 in the exam set from 2010.