Binary Search Trees

» Nearest Neighbor

* Binary Search Trees

* Insertion

» Predecessor and Successor
+ Deletion

» Algorithms on Trees

Philip Bille

Binary Search Trees

» Nearest Neighbor

Nearest Neighbor

+ Nearest neighbor. Maintain dynamic set S supporting the following operations. Each
element has key x.key and satellite data x.data.

» PREDECESSOR(K): return element with largest key < k.

+ SUCCESSOR(K): return element with smallest key > k.

+ INSERT(x): add x to S (we assume X is not already in S)
+ DELETE(x): remove x from S.

3 56 10 12 20 24
| || || | |
1 I

!

PREDECESSOR(8) k=28 SUCCESSOR(8)

Nearest Neighbor

» Applications.
+ Searching for similar data (typically multidimensional)
* Routing on the internet.

+ Challenge. How can we solve problem with current techniques?

Nearest Neighbor

+ Solution 1: linked list. Maintain S in a doubly-linked list.
head
on a1 o [lre et = 1]

+ PREDECESSOR(K): linear search for largest key < k.
+ SUCCESSOR(K): linear for smallest key = k.

+ INSERT(x): insert x in the front of list.

+ DELETE(X): remove x from list.

» Time.
+ PREDECESSOR and SUCCESSOR in O(n) time (n = [S)).
* INSERT and DELETE in O(1) time.

» Space.
+ O(n).

Nearest Neighbor

+ Solution 2: Sorted array. Maintain S in an sorted array.
1 2 3 4 5 6 7
[1 113]16[41[54]66]96]

+ PREDECESSOR(K): binary search for largest key < k.
+ SUCCESSOR(K): binary search for smallest key > k.
+ INSERT(x): build new array of size +1 with x inserted.
+ DELETE(x): build new array of size -1 with x removed.

+ Time.
+ PREDECESSOR and SUCCESSOR in O(log n) time.
* INSERT and DELETE in O(n) time.

» Space.
+ O(n).

Nearest Neighbor

Data structure PREDECESSOR| SUCCESSOR INSERT DELETE Space
linked list O(n) O(n) o(1) o(1) O(n)
sorted array O(log n) O(log n) O(n) O(n) O(n)

+ Challenge. Can we do significantly better?

Binary Search Trees

* Binary Search Trees

Binary Search Trees

+ Binary tree. Rooted tree, where each internal vertex
has a left child and/or a right child.

+ Binary search tree. Binary tree that satisfies the
search tree property.

+ Search tree property.
+ Each vertex stores an element.
+ For each vertex v:
- all vertices in left subtree are < v.key.
- all vertices in right subtree are > v.key.

Binary Search Trees

» Representation. Each vertex x stores
+ x.key
« x.left
+ x.right
* X.parent
+ (x.data)

8
+ Space. O(n) / N

(19) :

@ null 1

NE=g=cp)
N

3 11

null |nu|| null | 1

nulll null

\

20

null| null

Binary Search Trees

* Insertion

Insertion

+ INSERT(X): start in root. At vertex v:
+ if x.key < v.key go left.
+ if x.key > v.key go right.
« if null, insert x

(&)
INSERT(9) 6 @

Insertion

 INSERT(X): start in root. At vertex v:
« if x.key =< v.key go left.
« if x.key > v.key go right.
« if null, insert x

+ Exercise. Insert following sequence in binary search tree: 6, 14, 3, 8, 12,9, 34,1, 7

Insertion

INSERT(X,V)
if (v == null) return x
if (x.key < v.key)
v.left = INSERT(Xx, v.left)
if (x.key > v.key)
v.right = INSERT(X, Vv.right)

+ Time. O(h)

Binary Search Trees

» Predecessor and Successor

Predecessor

» PREDECESSOR(K): start in root. At vertex v:
+ if v == null: return null.
« if k == v.key: return v.
+ if k < v.key: go left.
+ if k > v.key: search in right subtree.

+ If element x with key < k in right subtree return x.

+ Otherwise, return v

Predecessor

PREDECESSOR(V, k)
if (v == null) return null
if (v.key == k) return v
if (k < v.key)
return PREDECESSOR(V.left, k)
t = PREDECESSOR(V.right, k)
if (t = null) return t
else return v

+ Time. O(h)
+ SUCCESSOR with similar algorithm in O(h) time.

Binary Search Trees

» Deletion

Deletion

+ DELETE(x): O
* 0 children: remove x. —_—
+ 1 child: splice x.

+ 2 children: find y = vertex with smallest
key > x.key. Splice y and replace x by y.

Deletion

» DELETE(x):
+ 0 children: remove x.
+ 1 child: splice x.

+ 2 children: find y = vertex with smallest
key > x.key. Splice y and replace x by y.

« Time. O(h)

Nearest Neighbor

Data structure PREDECESSOR | SUCCESSOR INSERT DELETE Space
linked list O(n) O(n) o(1) o(1) O(n)
sorted array O(log n) O(log n) O(n) O(n) O(n)
binary search tree O(h) O(h) O(h) O(h) O(n)
balanced binary
Y O(log n) O(log n) O(log n) O(log n) O(n)

+ Height. Depends on sequence of operations.
+ h = Q(n) worst-case and h = O(log n) on average.
+ Balanced binary search trees.

+ Possible to efficiently maintain binary search with height O(logn) (2-3 tree, AVL-
trees, red-black trees, ..)

+ Even better bounds possible with advanced data structures.

Binary Search Trees

» Nearest neighbor
+ PREDECESSOR(K): return element with largest key < k.
+ SUCCESSOR(K): return element with smallest key > k.
+ INSERT(x): add x to S (we assume x is not already in S)

+ DELETE(x): remove x from S.

+ Other operations on binary search trees.
+ SEARCH(K): determine if element with key k is in S and return it if so.

+ TREE-SEARCH(X, k): determine if element with key k is in subtree rooted at x and
return it if so.

TREE-MIN(x): return the smallest element in subtree rooted at x.

TREE-MAX(x): return the largest element in subtree rooted at x.

TREE-PREDECESSOR(X): return element with largest key < x.key.

TREE-SUCCESSOR(X): returner element with smallest key > x.key.

Binary Search Trees

« Algorithms on Trees

Algorithms on Trees

» Previous algorithms.

+ Heaps (MAX, EXTRACT-MAX, INCREASE-KEY, INSERT, ...)

+ Union find (INIT, UNION, FIND, ...)

+ Binary search trees (PREDECESSOR, SUCCESSOR, INSERT, DELETE, ...)
+ Challenge. How do we design algorithms on binary trees?

Algorithms on Trees

» Recursion on binary trees.
+ Solve problem on T(v):
+ Solve problem recursively on T(v.left) and T(v.right).
« Combine to get solution for T(v).

Algorithms on Trees

+ Example. Compute size(v) (= number of vertices in T(v)).
« If vis empty: size(v) = 0
+ Otherwise: size(v) = size(v.left) + size(v.right) + 1.

S1zE(V)
if (v == null) return 0
else return Size(v.left) + Size(v.right) + 1

+ Time. O(size(v))

Tree Traversals

* Inorder traversal.

« Visit left subtree recursively. G
* Visit vertex.
* Visit right subtree recursively. e @
+ Prints out the vertices in a binary search tree in
sorted order. 6 Q

+ Preorder traversal.
* Visit vertex. @

« Visit left subtree recursively.

« Visit right subtree recursively.
Inorder: 1, 3, 8, 11, 13, 14, 15, 20

Preorder: 15, 8, 1, 3, 14, 11, 13, 20
Postorder: 3, 1, 13, 11, 14, 8, 20, 15

+ Postorder traversal.
« Visit left subtree recursively.
» Visit right subtree recursively.
* Visit vertex.

Tree Traversals

INORDER(V)
if (v == null) return
INORDER(V.left)
print v.key
INORDER(V. right) G

PREORDER(V)

print v.key
PREORDER(V . left)
PREORDER(V . right)

PoSTORDER(V)
if (v == null) return
POSTORDER(V. left)
POSTORDER(V . right)
print v.key

+ Time. O(n)

if (v == null) return (3) (1)

Inorder: 1, 3, 8, 11, 13, 14, 15, 20
Preorder: 15, 8, 1, 3, 14, 11, 13, 20
Postorder: 3, 1, 13, 11, 14, 8, 20, 15

Binary Search Trees

» Nearest Neighbor

* Binary Search Trees

* Insertion

» Predecessor and Successor
+ Deletion

» Algorithms on Trees

