Introduction to graphs

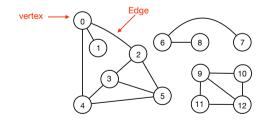
- Undirected graphs
- Representation
- · Depth first search
 - Connected components
- · Breadth first search
 - Bipartite graphs

Introduction to graphs

- Undirected graphs
- Representing graphs
- · Depth first search
 - Connected components
- · Breadth first search
 - · Bipartite graphs

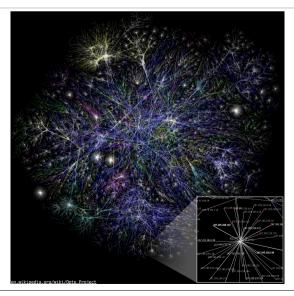
Undirected graphs

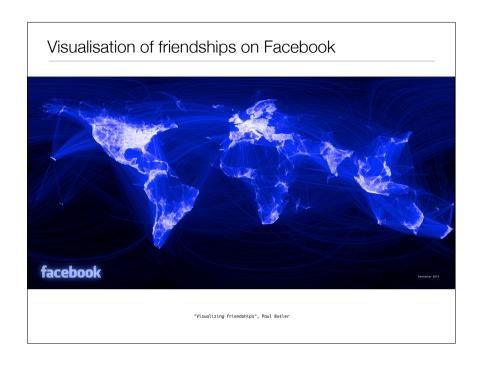
• Undirected graph. Set of vertices (da: knuder) pairwise joined by edges (da: kanter).

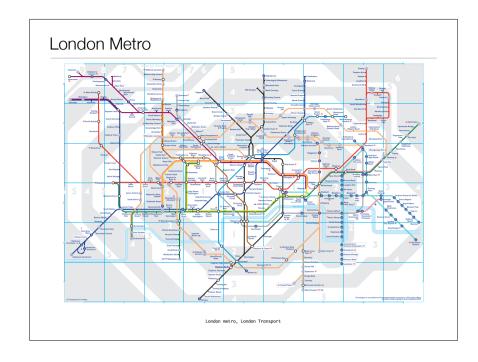


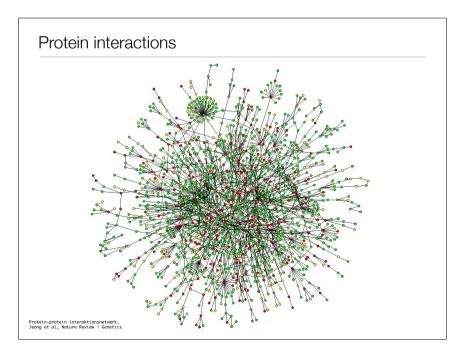
- · Why graphs?
 - · Models many problems from different areas.
 - · Thousands of practical applications.
 - · Hundreds of well-known graph algorithms.

Visualisation of the internet







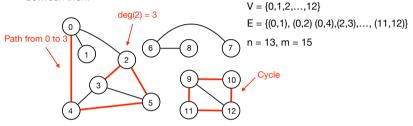


Examples of applications of graphs

Graph	Vertices	Edges	
communication	computers, routers, etc.	cables	
transport	intersections	roads	
transport	airports	flight routes	
games	position	valid move	
neural networks	neuron	Synapses	
financial network	stocks or currencies	transactions	
circuits	logical gates	connections	
food chain	species	predator-prey	
molecule	atom	bindings	

Terminology

- Undirected graph. G = (V, E)
 - V = set of vertices
 - E = set of edges (each edge is a pair of vertices)
 - n = |V|, m = |E|
- Path (da: sti). Sequence of vertices connected by edges.
- Cycle (da: kreds). (Nonempty) path starting and ending at the same vertex.
- Degree (da: grad). deg(v) = the number of neighbours of v, ore dges incident to v.
- Connectivity (da: sammenhæng). A pair of vertices are connected if there is a path between them

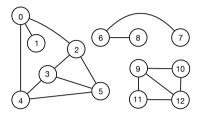


Algoritmic problems on graphs

- Path. Is there a path connecting s and t?
- Shortest path. What is the shortest path connecting s and t?
- Longest path. What is the longest simple (ie. not self-intersecting) path connecting s and t?
- · Cycle. Is there a cycle in the graph?
- Euler tour. Is there a cycle that uses each edge exactly once?
- Hamilton cycle. Is there a cycle that visits each *vertex* exactly once?
- · Connectivity. Is any pair of vertices connectable by a path?
- · Minimum spanning tree. What is the cheapest way of connecting all vertices?
- Biconnectivity. Is there a vertex whose removal would cause the graph to be disconnected?
- Planarity. Is it possible to draw the graph in the plane without edge crossings?
- Graph isomorphism. Do these sets of vertices and edges represent the same graph?

Undirected graphs

- Lemma. $\sum_{v \in V} deg(v) = 2m$.
- Proof. How many times is each edge counted in this sum?

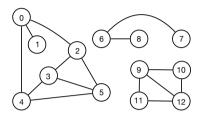


Introduction to graphs

- Undriected graphs
- Representation
- Depth first search
 - · Connected components
- · Breadth first search
 - · Bipartite graphs

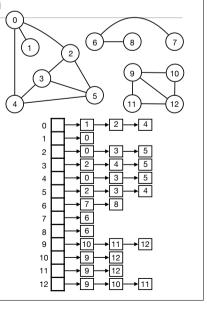
Representation

- · G graph with n vertices and m edges.
- Representation. We need the following operations on graphs.
 - ADJACENT(v, u): determine whether u and v are neighbours.
 - NEIGHBOURS(v): return all neighbours of v.
 - INSERT(v, u): add the edge (v, u) to G (unless it is already there).



Adjacency list representation

- · Graph G with n vertices and m edges.
- · Adjacency list (da: incidensliste).
 - Tabel A[0..n-1].
 - A[i] contains a list of all neighbours to i.
- · Complexity?
- Space. $O(n + \sum_{v \in V} deg(v)) = O(n + m)$
- · Time.
 - ADJACENT, NEIGHBOURS, INSERT O(deg(v)) time.



Adjacency matrix representation

- Graph G with n vertices and m edges.
- · Adjacency matrix (incidensmatrix).
 - 2D n x n table A.
 - A[i,j] = 1 if i and j er neighbours, 0 otherwis
- Complexity?
- Space. O(n2)
- · Time.
 - ADJACENT O(1) time
 - NEIGHBOURS(v) O(n) time.
 - INSERT(v, u) O(1) time.

/ise		(3	X	<u>/</u>	≺ ~	\	_		(9		_	-(10)
4	ノ						5)		(1	ノ		\	12)
	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	1	1	0	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	1	0	1	0	0	0	0	0	0	0
3	0	0	1	0	1	1	0	0	0	0	0	0	0
4	1	О	0	1	0	1	0	0	0	0	0	0	0
5	0	0	1	1	1	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	1	1	0	0	0	0
7	0	0	0	0	0	0	1	0	0	0	0	0	0
8	0	0	0	0	0	0	1	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1
10	0	0	0	0	0	0	0	0	0	1	0	0	1
11	0	0	0	0	0	0	0	0	0	1	0	0	1
12	0	0	0	0	0	0	0	0	0	1	1	1	0

Repræsentation

Datastruktur	ADJACENT	NEIGHBOURS	INSERT	Plads
adjacency matrix	O(1)	O(n)	O(1)	O(n²)
adjacency list	O(deg(v))	O(deg(v))	O(deg(v))	O(n+m)

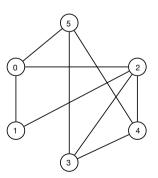
· Real world graphs are often sparse.

Introduction to graphs

- Undirected graphs
- Representation
- · Depth first search
 - Connected Components
- · Breadth first search
 - Bipartite graphs

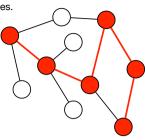
Depth first search

• Exercise. Run DFS (depth first search) from vertex 0, and report discovery time and finish time for each vertex. Assume the adjacency lists are sorted.



Depth first search

- · Algorithm for systematically visiting all vertices and edges.
- Depth first search (dybde-først) from vertex s.
 - Initially, all vertices un-marked, and visit vertex s.
 - · Visit vertex v:
 - · Mark v.
 - · Visit all unmarked neighbours of v recursively.

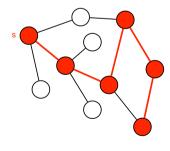


- · Intuition.
 - · Explore out from s in some direction, until coming to a "dead end".
 - · Go back to the last place where there were unexplored edges. Repeat.
- · Discovery time (starttid). First time a vertex is visited.
- Finish time (sluttid). Last time a vertex is visited.

Depth first search

```
DFS(s)
    time = 0
    DFS-VISIT(s)

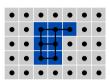
DFS-VISIT(v)
    v.d = time++
    marker v
    foreach unmarked neighbour u
        DFS-VISIT(u)
        u.π = v
    v.f = time++
```



- Time. (assuming the graph is given in adjacency list representation)
 - · Recursion? once per vertex.
 - O(deg(v)) time spent on vertex v.
 - \Longrightarrow total $O(n + \sum_{v \in V} deg(v)) = O(n + m)$ time.
 - · Only visits vertices connected to s.

Flood fill

• Flood fill (farveudfyldning). Chance the colour of a connected area of green pixels.



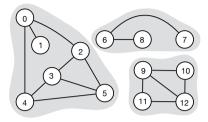
- Algorithm.
 - Build a grid graph and run DFS (depth first search).
 - · Vertex: pixel.
 - · Edge: goes between neighbouring pixels of same colour.
 - · Area: all vertices connected to a given vertex.

Introduction to graphs

- Undirected graphs
- Representation
- Depth first search
 - Connected Components
- · Breadth first search
 - · Bipartite graphs

Connected components

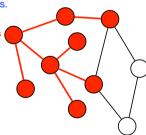
 Definition. A connected component (sammenhængskomponent) is a maximal subset of connected vertices.



- · How does one find all connected components?
- · Algorithm.
 - · Initially, let all vertices be unmarked.
 - · While there is an unmarked vertex:
 - · Chose an unmarked vertex v, run DFS from v.
- Time. O(n + m).

Breadth first search

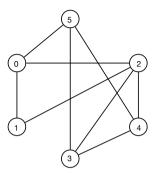
- Breadth first search (breddeførst søgning) from s.
 - · Initially, let all vertices be unmarked.
 - · Mark s, and add s to the queue K.
 - · While K is not empty:
 - · Excerpt vertex v from K.
 - · For all unmarked neighbours u of v
 - · Mark u.
 - Add u to K.



- · Intuition.
 - Explore, starting from s, in all directions in increasing distance from s.
- · Shortest paths from s.
 - Distance to s in BFS tree = shortest distance to s in the original graph.

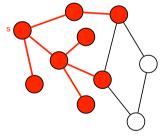
Breadth first search

 Exercise. Run BFS from vertex 0 and indicate the shortest paths. Assume the adjacency lists are sorted.



Breadth first search

```
BFS(s)
mark s
s.d = 0
K.ENQUEUE(s)
repeat until K is empty
v = K.DEQUEUE()
foreach unmarked neighbour u
mark u
u.d = v.d + 1
u.π = v
K.ENQUEUE(u)
```



- Time. (assuming adjacency list representation)
- · Each vertex is visited at most once.
- · O(deg(v)) time spent on vertex v.
- \Longrightarrow total $O(n + \sum_{v \in V} deg(v)) = O(n + m)$ time.
- · Only vertices connected to s are visited.

Shortest paths

- Lemma. BFS finds the length of the shortest path from s to all other vertices.
- · Intuition.
 - BFS assigns vertices to layers. Layer number i contains all vertices of distance i to s.

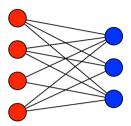
- · What does each layer contain?
- L₀: {s}
- L_{1:} all neighbours of L₀.
- L_2 : all neighbours if L_1 that are not neighbours of L_0
- L₃; all neighbours of L₂ that neither are neighbours of L₀ nor L₁.
- .
- $L_{i:}$ all neighbours til L_{i-1} not neighbouring L_{j} for j < i-1
 - = all vertices of distance i from s.

Introduction to graphs

- Undirected graphs
- Representation
- · Depth first search
 - Connected Components
- · Breadth first search
 - · Bipartite graphs

Bipartite graphs

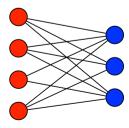
- Definition. A graph is bipartite (todelt) if and only if all vertices can be coloured red
 and blue such that every edge has exactly one red and one blue endpoint.
- Alternativt definition. A graph is bipartite if and only if its vertices can be partitioned into two sets V₁ and V₂ such that all edges go between V₁ and V₂.



- · Application.
 - Scheduling, matching, assigning customers to servers, assigning jobs to machines, assigning students to advisors/labs, ...
 - · Many graph problems are easier on bipartite graphs.

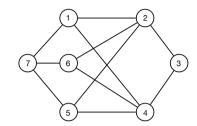
Bipartite graphs

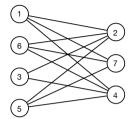
- · Lemma. A graph G is bipartite if and only if all cycles in G have even length.
- Proof. \Longrightarrow
 - If G is bipartite, all cycles start and end in the same side.



Bipartite graphs

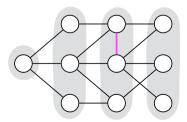
· Challenge. Given a graph G, determine whether G is bipartite.

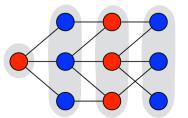




Bipartite graphs

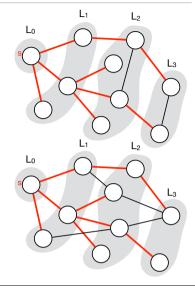
- Lemma. A graph G is bipartite if and only if all cycles in G have even length.
- Proof. ←
 - · Choose a vertex v and consider BFS layers L₀, L₁, ..., L_k.
 - All cycles have even length ⇒ There is no edge between vertices of the same layer ⇒ We can assign alternating (red, blue) colours to the layers ⇒ G is bipartite.





Bipartite graphs

- · Algorithm.
 - · Run BFS on G.
 - For every edge of G, determine whether it goes between vertices of the same layer.
- · Time.
 - O(n + m)



Introduction to graphs

- Undirected graphs
- Representation
- Depth first search
 - Connected components
- · Breadth first search
 - Bipartite graphs

Graph algorithms

Algorithm	Tlme	Space		
Depth first search	O(n + m)	O(n + m)		
Breadth first search	O(n + m)	O(n + m)		
Connected components	O(n + m)	O(n + m)		
Bipartite	O(n + m)	O(n + m)		

• All running times assume that G is given in the adjacency list representation.