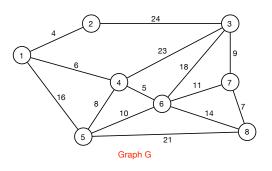
Minimum Spanning Trees

- · Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- · Kruskal's Algorithm

Philip Bille

Minimum Spanning Trees

- · Weighted graphs. Weight w(e) on each e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- · Minimum spanning tree (MST). Spanning tree of minimum total weight.

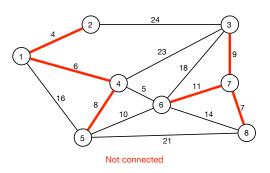


Minimum Spanning Trees

- · Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

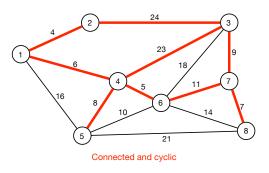
Minimum Spanning Trees

- Weighted graphs. Weight w(e) on each e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- · Minimum spanning tree (MST). Spanning tree of minimum total weight.



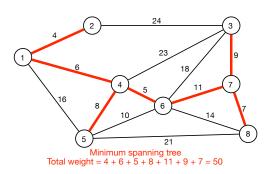
Minimum Spanning Trees

- · Weighted graphs. Weight w(e) on each e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- · Minimum spanning tree (MST). Spanning tree of minimum total weight.



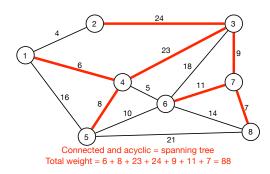
Minimum Spanning Trees

- · Weighted graphs. Weight w(e) on each e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- · Minimum spanning tree (MST). Spanning tree of minimum total weight.



Minimum Spanning Trees

- Weighted graphs. Weight w(e) on each e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- · Minimum spanning tree (MST). Spanning tree of minimum total weight.



Applications

- · Network design.
- · Computer, road, telephone, electrical, circuit, cable tv, hydralic, ...
- · Approximation algorithms.
 - Travelling salesperson problem, steiner trees.
- · Other applications.
 - · Meteorology, kosmology, biomedical analysis, encoding, image analysis, ...

Minimum Spanning Trees

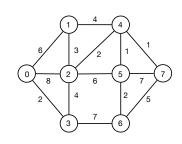
- Minimum Spanning Trees
- · Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

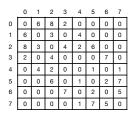
Minimum Spanning Trees

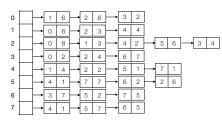
- Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Representation of Weighted Graphs

- · Adjacency matrix and adjacency list.
- Similar for directed graphs.





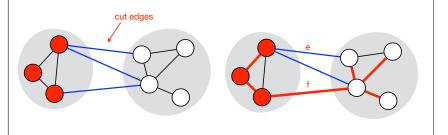


Properties of Minimum Spanning Trees

- · Assume for simplicity:
 - · All edge weights are distinct.
 - · G is connected.
- ⇒ MST exists and is unique.

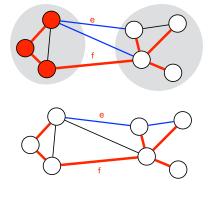
Cut Property

- Def. A cut is a partition of the vertices into two non-empty sets.
- Def. A cut edge is an edge crossing the cut.
- Cut property. For any cut, the lightest cut edge is in the MST.
- · Proof.
 - Assume the lightest cut edge e is not in the MST.
 - · Replace e with the other cut edge f.
 - · Produces a new MST with smaller weight.



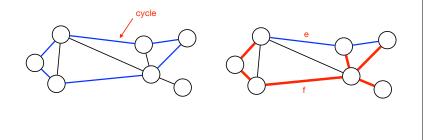
Properties of Minimum Spanning Trees

- Cut property. For any cut, the lightest cut edge is in the MST.
- Cycle property. For any cycle, the heaviest edge is not in the MST.



Cycle Property

- Cycle property. For any cycle, the heaviest edge is not in the MST.
- · Proof.
 - Assume heaviest edge f in cycle is in MST.
 - · Replace f with lighter edge e in cycle.
 - · Produces a new MST with smaller weight.

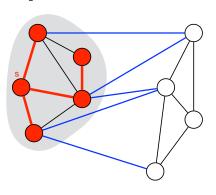


Minimum Spanning Trees

- · Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

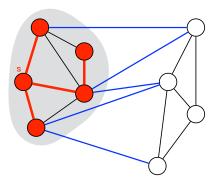
Prim's Algorithm

- · Grow a tree T from some vertex s.
- In each step, add lightest edge with one endpoint i T.
- Stop when T has n-1 edges.



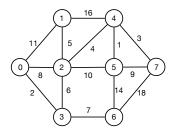
Prim's Algorithm

- Lemma. Prim's algorithm computes the MST.
- Proof.
 - · Consider cut between explored and unexplored vertices.
 - Vi add lightest cut edge to T.
 - Cut property \Rightarrow edge is in MST \Rightarrow T is MST after n-1 steps.



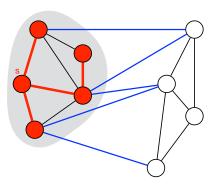
Prim's Algorithm

- Grow a tree T from some vertex s.
- In each step, add lightest edge with one endpoint i T.
- Stop when T has n-1 edges.
- Exercise. Show execution of Prim's algorithm from vertex 0 on the following graph.



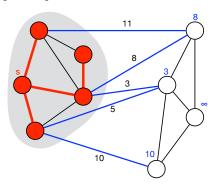
Prim's Algorithm

- Implementation. How do we implement Prim's algorithm?
- Challenge. Find the lightest cut edge.



Prim's Algorithm

- Implementation. Maintain vertices outside T in priority queue.
 - Key of vertex v = weight of lightest cut edge (∞ if no cut edge).
 - · In each step:
 - Find lightest edge = EXTRACT-MIN
 - · Update weight of neighbors of new vertex with DECREASE-KEY.



Prim's Algorithm

- Priority queues and Prim's algorithm. Complexity of Prim's algorithm depend on priority queue.
 - n INSERT
 - n Extract-Min
 - m + 1 DECREASE-KEY

Priority queue	INSERT	EXTRACT-MIN	DECREASE-KEY	Total
array	O(1)	O(n)	O(1)	O(n²)
binary heap	O(log n)	O(log n)	O(log n)	O(m log n)
Fibonacci heap	O(1)†	O(log n)†	O(1)†	O(m + n log n)

- † = amortized
- · Greed. Prim's algorithm is a greedy algorithm.
 - Makes local optimal choices in each step that lead to global optimal solution.

Prim's Algorithm

```
PRIM(G, s)
    for all vertices v∈V
        v.key = ∞
        v.\pi = null
        INSERT(P, V)
    DECREASE-KEY(P,s,0)
    while (P \neq \emptyset)
        u = EXTRACT-MIN(P)
        for all neighbors v of u
            if (v \in P \text{ and } w(u,v) < key[v])
                DECREASE-KEY(P, v, w(u, v))
                v.\pi = u
· Time.

    n EXTRACT-MIN

    n INSERT

   · O(m) DECREASE-KEY
```

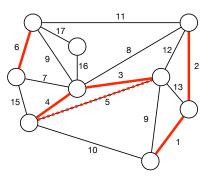
• Total time with min-heap. $O(n \log n + n \log n + m \log n) = O(m \log n)$

Minimum Spanning Trees

- Minimum Spanning Trees
- Representation of Weighted Graphs
- · Properties of Minimum Spanning Trees
- Prim's Algorithm
- · Kruskal's Algorithm

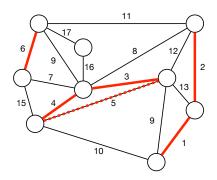
Kruskal's Algorithm

- · Consider edges from lightest to heaviest.
- In each step, add edge to T if it does not create a cycle.
- Stop when T has n-1 edges.



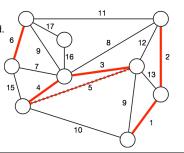
Kruskal's Algorithm

- Implementation. How do we implement Kruskal's algorithm?
- Challenge. Check if an edge form a cycle.



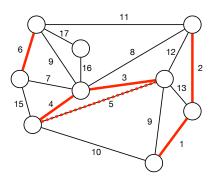
Kruskal's Algorithm

- Lemma. Kruskal's algorithm computes the MST.
- · Proof.
 - Consider edge e = (u,v) added to T at some point.
- Case 1. e creates a cycle and is not added to T.
 - e must be heaviest edge on cycle.
 - Cycle property ⇒ e is not in MST.
- Case 2. e does not create a cycle and is added to T.
 - · e must be lightest edge in cut.
 - Cut property ⇒ e is in MST.
- ⇒ T is MST when n-1 edges are added.



Kruskal's Algorithm

- Implementation. Maintain edges in a data structure for dynamic connectivity.
- · In each step:
 - Check if an edge creates a cycle = CONNECTED.
 - Add new edge = INSERT.



Kruskal's Algorithm

```
KRUSKAL(G)
Sort edges
INIT(n)
for all edges (u,v) i sorted order
if (!CONNECTED(u,v))
INSERT(u,v)
return all inserted edges

• Time.
• Sorting m edges.
• 1 INIT
• m CONNECTED
```

- Total time. $O(m \log m + n + m \log n + n \log n) = O(m \log n)$.
- · Greed. Kruskal's algorithm is also a greedy algorithm.

Minimum Spanning Trees

- Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm

n INSERT

· Kruskal's Algorithm

Minimum Spanning Trees

• What is the best algorithm for computing MSTs?

Year	Time	Authors
???	O(n log m)	Jarnik, Prim, Dijkstra, Kruskal, Boruvka, ?
1975	O(m log log n)	Yao
1986	O(m log* n)	Fredman, Tarjan
1995	O(m)‡	Karger, Klein, Tarjan
2000	O(na(m,n))	Chazelle
2002	optimal	Pettie, Ramachandran

‡ = randomized