Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing

Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing

Dictionaries

Dictionary: Maintain a dynamic set S. Every element x has a key x. key from a universe U, along with satellite data x.data.
Operations:
search (k) determine whether an element x with $x \cdot k e y=k$ exists, and return it. insert(x) add x to the set S. delete (x) remove x from the set S.


```
insert(`)
search(4)
search(%)
```


Dictionaries

Applications

- Basic data structure for representing a set
- Used in many algorithms and data structures

Challenge How can we solve the dictionary problem using current techniques?

Dictionaries - solution with a chained list - too slow!

Time:
search $(\mathrm{k})-O(|S|)$ time (search through all elements)
insert(x) - $O(1)$ time (insert at head of list)
delete $(x)-O(1)$ time to change pointers.
Space: $O(|S|)$ space.

Dictionaries - solution with an array - too large!

- A is an array of size U
- Save x on the position $A[x . k e y]$ in A.
$\operatorname{search}(k)-O(1)$ time to return $A[k]$ insert $(\mathrm{x})-O(1)$ time to set $A[x$. key $]=x$ delete $(\mathrm{x})-O(1)$ time to set $A[x$. key $]=$ null.

Space: $O(|U|)$
Exercise: When is this a problem?

Dictionaries - two dissatisfactory solutions

Data structure	Search	Insert	Delete	Space
Chained list	$O(\|S\|)$	$O(1)$	$O(1)$	$O(\|S\|)$
Array	$O(1)$	$O(1)$	$O(1)$	$O(\|U\|)$

Challenge: Can we do better?

Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing

Hashing with chaining

Idea: Use a hash function $h: U \rightarrow\{0, \ldots, m\}$ where $m=O(|S|)$.

- Maintain an array A of size m,
- Each entry of the array points to a chained list,
- The element x is stored somewhere in the chained list at $A[h(x . k e y)]$.

Collision: When $m<|U|$, then even when x.key $\neq y$.key, we risk $h(x$. key $)=h(y . k e y)$. We call this a collision.
We want h such that there are few collisions. Hash (vb tr) "to confuse, muddle, or mess up".

Hashing with chaining

How it works.

- insert(오)
$h($ 고 $)=0$
- insert(か)
$h(\boldsymbol{K})=7$
- search ($x^{\text {r }}$)
$h($ 除 $)=15$
- search (\%)
$\mathrm{h}(\%)=2$

Hashing with chaining

How it works.

$$
\begin{aligned}
& \operatorname{search}(k) \text { - search through } A[k] \text { 's list for } k . \\
& \text { insert }(x) \text { - insert } x \text { in } A[h(x . k e y)] \text { 's list. } \\
& \text { delete }(x) \text { - delete } x \text { from list. }
\end{aligned}
$$

Time:

$$
\begin{aligned}
& \operatorname{search}(\mathrm{k})-O(\mid \text { list's length } \mid) \text { time } \\
& \text { insert }(\mathrm{x})-O(1) \text { time (at head of list) } \\
& \text { delete }(\mathrm{x})-O(1) \text { time to change pointers. }
\end{aligned}
$$

Plus the time it takes to calculate $h(x$.key $)$ Space:
$O(m+|S|)=O(|S|)$

Hashing with chaining - Exercise

Insert the following keys K in a hash table of size 9 using hashing with chaining using the hash function

$$
h(k)=k \quad \bmod 9
$$

$K=5,28,19,15,20,33,12,17,10$
How long is the longest list?

0	
1	
1	
2	
3	$\square-$
4	\square
5	\square
6	$\square-$
7	\square
8	\square

Uniform hashing

Imagine there's a uniform hash function $h: U \rightarrow\{0, \ldots, m-1\}$.

Uniform hashing

Definition (Load factor)

$\alpha=|S| / m$. The average length of lists.
$m=\Theta(|S|) \Rightarrow \alpha=\Theta(1)$.
Dream world: Imagine there's a hash function h that is

- computable in $O(1)$ time, and
- For any $x \in U: h(x)$ is independent uniformly random in $\{0, \ldots, m-1\}$.
Then:
- Expected length of list $=\alpha$.
- $\Rightarrow \operatorname{search}(k)$ in $O(\alpha)=O(1)$ time.
- Search, Insert, Delete: $O(1)$ time.
 $O(|S|)$ space.

Dictionaries - two dissatisfactory and one imaginary

Data structure	Search	Insert	Delete	Space
Chained list	$O(\|S\|)$	$O(1)$	$O(1)$	$O(\|S\|)$
Array	$O(1)$	$O(1)$	$O(1)$	$O(\|U\|)$
Hashing with chaining	$O(1)^{\dagger}$	$O(1)$	$O(1)$	$O(\|S\|)$

${ }^{\dagger}$: Expected running time. Assuming uniform hashing.
Challenge: Find a real-life hash function that works.

Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing

Universal hashing

Goal: Avoid collisions $h(y)=h(x)$ for $x \neq y$. If $h(x)$ and $h(y)$ are independent uniform random, then

$$
\operatorname{Pr}[h(x)=h(y)]=1 / m
$$

Definition (Universal hashfunction)
h is universal if for any $x, y \in U$ with $x \neq y$,
$\operatorname{Pr}[h(x)=h(y)] \leq 1 / m$
If h is universal, what is the expected size of the list at $A[h(x)]$?

$$
\sum_{y \in S} \operatorname{Pr}[h(y)=h(x)] \leq 1+\sum_{y \in S \backslash\{x\}} \frac{1}{m} \leq 1+\frac{|S|}{m}=O(1)
$$

All operations in (expected) $O(1)$ time!

Hash function: multiply-mod-prime

p is a prime $>|U|$.

$$
h_{a, b}(x)=((a x+b) \quad \bmod p) \quad \bmod m
$$

- Select $a \in\{1, \ldots, m-1\}$ and $b \in\{0, \ldots, m-1\}$ independently uniformly at random
- Use $h(x)=h_{a, b}(x)=\pi\left(\widetilde{h}_{a, b}(x)\right)$ as hash function.
- $\widetilde{h}_{a, b}$ is collision free because $a \neq 0$
- π introduces collisions when $m<p$
- Given $x \neq y$, then $\operatorname{Pr}[h(x)=h(y)]<\frac{1}{m}$

Hash function: multiply-shift

Assume $|U|$ and m are powers of 2 .
E.g $|U|=2^{w}=2^{64}$ and $m=2^{L}$.

$$
\begin{equation*}
w-1 \tag{0}
\end{equation*}
$$

w-L

$a x$	$\left(a^{*} x\right)>$
- Select odd $a \in\{1,3,5, \ldots,\|U\|-1\}$	

- $h_{a}(x)=\left\lfloor\left(a x \bmod 2^{w}\right) / 2^{w-L}\right\rfloor$
- Implementation: return (a*x)»(64-L);
- $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right] \leq \frac{2}{m}$

Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing

Analogies

Linear Probing: Like a shelf. No space for $\boldsymbol{\aleph}$ at $h(\boldsymbol{\aleph})=7$, So insert $\widehat{\text { at }}$ the nearest vacant spot to the right.

Chaining: Like a desk of drawers.
Must linear-search through drawer no. 8 to find

Linear probing

- Maintain an array of size m
- Idea: Save x in A [x.key]
- Challenge: Collisions.

Linear probing

－Maintain an array of size m
－A cluster is a sequence of consecutive non－empty positions．
－Store x in A［x．key］，or somewhere in the cluster containing x ．key，to the right of x ．key．

Example：
Insert（8）． $\mathrm{h}\left(\mathrm{K}_{6}\right)=8$ ．
Delete（5）． $\mathrm{h}(\mathrm{C})=7 . \mathrm{h}($ 大 $)=7$ ．
Search（曾） h （曾）$=2$ ．
Space：$m=O(|S|)$ ．Time：$O(\mid$ cluster $\mid) . \leftarrow O(1)$ for some hash functions h ．

Linear Probing

Huge advantage: Linear Probing is cache efficient.

Hashing

- Dictionaries
- Hashing with chaining
- Hash functions
- Linear Probing

