
Hashing

I Dictionaries
I Hashing with chaining
I Hash functions
I Linear Probing



Hashing

I Dictionaries
I Hashing with chaining
I Hash functions
I Linear Probing



Dictionaries

Dictionary: Maintain a dynamic set S . Every element x has a key
x .key from a universe U, along with satellite data x .data.
Operations:

search(k) determine whether an element x with x .key = k
exists, and return it.

insert(x) add x to the set S .
delete(x) remove x from the set S .

⚓🎄

🔮
🐹

🔩

🔪

U S insert(🔨)
search(🎄)

search(🐎)



Dictionaries

Applications
I Basic data structure for representing a set
I Used in many algorithms and data structures

Challenge How can we solve the dictionary problem using current
techniques?



Dictionaries - solution with a chained list - too slow!

head 🔮 🔩 🐹 ⚓ 🎄🔪🔨

Time:
search(k) - O(|S |) time (search through all elements)
insert(x) - O(1) time (insert at head of list)
delete(x) - O(1) time to change pointers.

Space: O(|S |) space.



Dictionaries - solution with an array - too large!

I A is an array of size U

I Save x on the position A [x .key ] in A.

search(k) - O(1) time to return A [k]

insert(x) - O(1) time to set A[x .key] = x

delete(x) - O(1) time to set A [x .key] = null .

Space: O(|U|)

Exercise: When is this a problem?



Dictionaries - two dissatisfactory solutions

Data structure Search Insert Delete Space
Chained list O(|S |) O(1) O(1) O(|S |)
Array O(1) O(1) O(1) O(|U|)

Challenge: Can we do better?



Hashing

I Dictionaries
I Hashing with chaining
I Hash functions
I Linear Probing



Hashing with chaining

Idea: Use a hash function h : U → {0, . . . ,m}
where m = O(|S |).

I Maintain an array A of size m,
I Each entry of the array points to a

chained list,
I The element x is stored somewhere in the

chained list at A [h(x .key)] .

Collision: When m < |U|, then even when
x .key 6= y .key , we risk h(x .key) = h(y .key).
We call this a collision.
We want h such that there are few collisions.
Hash (vb tr) “to confuse, muddle, or mess up”.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

🐹

🐿
🍺

🔮 🎄

🔩

🔪



Hashing with chaining

How it works.
I insert(⚓)

h(⚓) = 0
I insert(🔨)

h(🔨) = 7
I search(🐎)

h(🐎) = 15

I search(🔮)
h(🔮) = 2

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

🐹

🐿
🍺

🔮 🎄

🔩

🔪



Hashing with chaining

How it works.

search(k) - search through A[k] ’s list for k .

insert(x) - insert x in A [h(x .key)] ’s list.

delete(x) - delete x from list.

Time:
search(k) - O(|list’s length|) time
insert(x) - O(1) time (at head of list)
delete(x) - O(1) time to change pointers.

Plus the time it takes to calculate h(x .key)
Space:
O(m + |S |) = O(|S |)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

🔨

🐿
🍺

🔮 🎄

🔩

🐹 🔪

⚓



Hashing with chaining - Exercise

Insert the following keys K in a hash table of size 9
using hashing with chaining using the hash function

h(k) = k mod 9

K = 5, 28, 19, 15, 20, 33, 12, 17, 10

How long is the longest list?

0
1
2
3
4
5
6
7
8



Uniform hashing

Imagine there’s a
uniform hash function h : U → {0, . . . ,m − 1}.



Uniform hashing

Definition (Load factor)
α = |S |/m. The average length of lists.
m = Θ(|S |)⇒ α = Θ(1).
Dream world: Imagine there’s a hash function h that is

I computable in O(1) time, and
I For any x ∈ U: h(x) is independent uniformly

random in {0, . . . ,m − 1}.
Then:

I Expected length of list = α.
I ⇒ search(k) in O(α) = O(1) time.
I Search, Insert, Delete: O(1) time.

O(|S |) space.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

🐹

🐿
🍺

🔮 🎄

🔩

🔪



Dictionaries - two dissatisfactory and one imaginary

Data structure Search Insert Delete Space
Chained list O(|S |) O(1) O(1) O(|S |)
Array O(1) O(1) O(1) O(|U|)
Hashing with chaining O(1)† O(1) O(1) O(|S |)

†: Expected running time. Assuming uniform hashing.

Challenge: Find a real-life hash function that works.



Hashing

I Dictionaries
I Hashing with chaining
I Hash functions
I Linear Probing



Universal hashing

Goal: Avoid collisions h(y) = h(x) for x 6= y .
If h(x) and h(y) are independent uniform random, then

Pr [h(x) = h(y)] = 1/m

Definition (Universal hashfunction)
h is universal if for any x , y ∈ U with x 6= y ,
Pr [h(x) = h(y)] ≤ 1/m
If h is universal, what is the expected size of the list at A[h(x)]?∑

y∈S
Pr [h(y) = h(x)] ≤ 1 +

∑
y∈S\{x}

1
m
≤ 1 +

|S |
m

= O(1)

All operations in (expected) O(1) time!



Hash function: multiply-mod-prime

p is a prime > |U|.

{1..u}
{0..m-1}

 ~h  π

{1..p-1}

ha,b(x) = ((ax + b) mod p) mod m

I Select a ∈ {1, . . . ,m − 1} and b ∈ {0, . . . ,m − 1}
independently uniformly at random

I Use h(x) = ha,b(x) = π(h̃a,b(x)) as hash function.

I h̃a,b is collision free because a 6= 0
I π introduces collisions when m < p

I Given x 6= y , then Pr [h(x) = h(y)] < 1
m



Hash function: multiply-shift

Assume |U| and m are powers of 2.
E.g |U| = 2w = 264 and m = 2L.

ax

w-1 w-L 0

(a*x)>>(w-L)

I Select odd a ∈ {1, 3, 5, . . . , |U| − 1}
I ha(x) = b(ax mod 2w )/2w−Lc
I Implementation: return (a*x)»(64-L);
I Pr [ha(x) = ha(y)] ≤ 2

m



Hashing

I Dictionaries
I Hashing with chaining
I Hash functions
I Linear Probing



Analogies

1 2

3 4

5 6

7 8

9 10

Chaining: Like a desk of drawers.
Must linear-search through
drawer no. 8 to find 🐹

0 1 2 3 4 5 6 7 8 9 ...   
🐿🔮🎄⚓ 🔩🔪🐹

Linear Probing: Like a shelf.
No space for 🔨 at h(🔨) = 7,
So insert 🔨 at the nearest vacant
spot to the right.



Linear probing

0   1   2   3   4   5   6   7   8   9  10 11 12 13 14 15

⚓ 🎄🔮🐿 🔪🐹🔨 🔩

I Maintain an array of size m

I Idea: Save x in A[x .key ]

I Challenge: Collisions.



Linear probing

0   1   2   3   4   5   6   7   8   9  10 11 12 13 14 15

⚓ 🎄🔮🐿 🔪🐹🔨 🔩

I Maintain an array of size m

I A cluster is a sequence of consecutive non-empty positions.
I Store x in A [x .key ], or somewhere in the cluster containing

x .key , to the right of x .key .

Example:
Insert(🍨). h(🍨) = 8.
Delete(🐹). h(🐹) = 7. h(🔨)=7.
Search(🔮). h(🔮) = 2.
Space: m = O(|S |). Time: O(|cluster|). ← O(1) for some hash
functions h.



Linear Probing

Huge advantage: Linear Probing is cache efficient.



Hashing

I Dictionaries
I Hashing with chaining
I Hash functions
I Linear Probing


