Directed graphs Directed graphs

Introduction Introduction
Representation
Depth First Search / Breadth First Search

Topological Sorting

Representation
Depth First Search / Breadth First Search
Topological Sorting

vV V. v Vv VY

Strongly Connected Components Strongly Connected Components

vV V. VvV vV v VY

v

Implicit Graphs Implicit Graphs

Un-directed graph example: Transport

HaviofH

N

Example: Streetmap — a graph?

Directed graph

Definition (Directed graph)

Set of vertices, pairwise joined by directed edges.

deg™(6) = 4, deg™ (6) = 2
\
O, O=0NO0

(=)
bt

cycle

ot o

path from 0 to 2

Example: Streetmap — a graph?

Some streets are one-way. This is modelled by directed graphs.

Application: WWW

> Vertex: Web page. Edge: Hyperlink.
» Webcrawling. Page rank.

o
38 = "

"6

http://computationalculture.net/what_is_in_pagerank/

Application: Automata, regular expressions

» Vertex: State. Edge: Transition.

» This automaton accepts “aaab” < there is a path from vertex
1 to vertex 10 that matches the string “aaab”

» Regular expressions can be represented by automata.

Application: Dependencies

shortest_paths

Dijkstra’s

strongly conconnected component

Application: Dependencies

» Vertex: subject. Edge: dependency.

» Are there any cyclic dependencies? Can we avoid that the
present subject depends on a future one?

. . strongly concon-
merge sort insertion sort stacks graphs nected component
% T

/ undirected graphs directed graphs

arrays ———— dictionaries

N

binary search / l

lists ————> BFS/DFS——> topological sort
\ / union-find
binary search trees \ shortest

/ Mo "

heaps Dijkstra's

Application: Garbage Collection

Vertex: Object. Edge: Reference.

roots

Applications
graph vertices edges
internet webpage hyperlink
transport intersection | oneway street
scheduling job precedence relation
infectious disease | person disease transmission
citation network | article citation
object graph objects pointers
object hierarchy | class inheritance

Algorthmic problems on direted graphs

Reachability. Is there a path from s to t7
Shortest path. What is the shortest path from s to t?

Directed cycle. Does the graph contain a (directed) cycle?

Topological sort. Can we arrange the vertices such that all the

edges go the same direction?

Strong connectivity. Is there a path from anywhere to anywhere

else in the graph?

Transitive closure. Every path in a graph is represented by an edge

in the transitive closure of that graph.

Directed Graphs

Lemma
Zvevdeg_(v) = Zvevdeg+(v) =m

Proof.
Every edge has exactly one head and one tail.

0.

()& (D
()

O

Directed graphs

v

v

v

v

v

v

Introduction

Representation

Depth First Search / Breadth First Search
Topological Sorting

Strongly Connected Components

Implicit Graphs

]

Representation

» G is a directed graph with n vertices and m edges
» Representation. We need the following operations:
» PointsTo(u,v): Does u point to v?
» Neighbours(v): Returns all the vertices that v points to.
(Aka. all out-neighbours of v.)
» Insert(v,u): Add the edge (v,u) to G.
(unless already present).

Adjacency list

Directed graph G with n vertices and
m edges.
Adjacency list:

> Array A[0...n—1]

» AJi] contains a list of all

o[-]

vertices that / points to. 'H

Space s [
p)

O(n+ X, cy deg®(v)) = O(n+ m). s[-E-E

Time ° _—'IEI—'IEI

PointsTo(u,v) O(deg™(u)) time. . |
Neighbours (v) O(degt(v)) time. ::’—

I Bl 1

Insert (v,u) O(degt(v)) time. "

Adjacency matrix

Directed graph G with n vertices and

m edges.
Adjacency matrix:
> n X n matrix A
0123 456 7 8 9101112
> Ali,j] =1 when i — j, else 0. ofo1JoJol+fofoJoofofofofo
1flo]ofo]ojojojojojofjojofo]o
Space O(n?). sl e fole o e oo o
Tlme 4lofojofojof1jojojofojofo]oO
5(ofof1|[1]ofofofojojofo]O]O
PointsTo(u,v) O(1) time. T eTete e teTe e e et ote
Neighbours (v) O(n) time. s ofoooole[olefole [oo
. 10)lojojojojojofojofofofofof1
Insert(v,u) O(l) time. 11[ofo]o]o]o]o]o]o]o]1]o]0]0
12|ojojojojojojojojoj1joj1]o
Representation
Data structure PointsTo Neighbours | Insert Space
Adjacency matrix | O(1) O(n) o(1) 0o(n?)
Adjacency list O(deg™(v)) | O(deg™(v)) | O(deg™ (v)) | O(n+ m)

Directed graphs

v

v

v

v

v

v

Introduction

Representation

Depth First Search and Breadth First Search
Topological Sort

Strongly Connected Components

Implicit Graphs

Directed graphs

v

v

v

v

v

v

Introduction

Representation

Search

Topological Sorting

Strongly Connected Components

Implicit Graphs

Depth First Search / Breadth First Search

Depth First Search
» Let all vertices be unmarked. s
Visit s.
» When visiting v:
» Mark v,

> Recursively visit the
out-neighbours of v.

Breadth First Search
» Let all vertices be unmarked. .~’
» Mark s, add s to queue Q.
» While @ is not empty:
» Dequeue v from Q, .

» For all usuch that v — u
» Mark u, add u to Q. ‘

Time O(n+ m)

Topological Sorting and DAGs

DAG Directed Acyclic Graph. Does not contain a cycle.
Topological sorting. An ordering of the vertices on a horizontal line,
such that all edges go left to right.

Algorithmic problems
» Determine whether the input graph G is a DAG.
> Return a topological sorting of the vertices (in the affirmative case).

Goal: Show G is a DAG < G has topological sorting.
Give an algorithm for solving both.

Topological Sorting and DAGs Topological Sorting and DAGs - Exercise

Come up with a strategy for finding a topological sorting of a given

DAG.
Lemma G has a topological sorting = G is a DAG.

Proof. Assume G has a topological sorting.

00 0 GO O

If G is not a DAG, then it has a cycle, K = vy,.
Let j be the vertex of K furthest to the right.
There is some edge j — i in K, and thus in G.
But / is before j = not a topological sorting.

Topological Sorting and DAGs Topological Sorting and DAGs

Lemma G is a DAG = G admits a topological sorting
Lemma. G is a DAG = G has a vertex v with deg™ (v) =0,
that is, in-degree 0. No other vertex points to v.

Proof by induction over the number of vertices in G.

> (Base Case) If the graph has only one vertex, it already sorted.

> (Induction Step)

Proof. Assume every vertex v has in-degree > 1.
» Find a vertex v with deg™ (v) = 0.

Walk backwards for n+ 1 steps, starting at any vertex s. c el 2 DAC. G A oxical sorti
. . > — —
There are only n vertices in G, so at least one vertex must have v is still a : v has a topological sorting.
b isited twice: have found le Gi DAG » Place v furthest to the left, followed by the sorting of G — v.
een visited twice; we have found a cycle. s not a) This is a valid topological sorting since no edges go into v!

Topological sorting — Implementation

Goal Efficient algorithm on the adjacency list representation.
Algorithm Based on the proof:

if G=({v},0) then

print v.
else
find v with deg”(v) =0
print v
TopSort(G — v)
end if

Correctness Follows from the proof.
Time Repeat until all but one vertex is removed: n times.

» Find a vertex of in-degree 0 How much time for this?

» Remove it from the graph. Every edge is removed
exactly once = Total time O(m) on this step.

Topological sorting — Implementation 2 (smart)

Solution 2 Maintain information about the indegrees of all vertices.
Keep a linked list of vertices of degree 0.

@'e (v,deg™ (v)) table

BSROSHO

Initialising O(n + m) time. o] e, 6]

A WNHEO

Repeat until all but one vertex is removed: n times.
» Find a vertex of in-degree 0 O(1) time

» Remove it from the graph Every edge is removed
exactly once = Total time O(m) on this step.

Total O(n+ m).

Topological sorting — Implementation 1 (not smart)

Solution 1 Construct the reversed graph GR:
if G=({v},0) then

print v.
else @ e

find v with deg™(v) =0 a.a.a
print v “

TopSort(G — v) GR e e

end if _
Linear search in GF to find a vertex of out-degree 0.

Time Repeat until all but one vertex is removed: n times.

» Find a vertex of in-degree 0 O(n) time

» Remove it from the graph Every edge is removed
exactly once = Total time O(m) on this step.

Total O(n? + m) = O(n?).

Topological Sorting and DAGs

Lemma
G is a DAG < G has a topological sorting.

Theorem
There is an O(n+ m) time algorithm that determines whether G is
a DAG, and, in the affirmative case outputs a topological sorting.

Topological Sorting via DFS Directed graphs

Idea:

» Run DFSon G

» When returning from the recursive call on vertex v, push v to

a stack.

> Print stack. >
Time O(m + n)
Intuition Recursively finds vertices of out-degree 0.

Introduction
» Representation
» Depth First Search / Breadth First Search

0 » Topological Sorting

Q' Strongly Connected Components
6014325 Implicit Graphs

&—E
o{CquoNo= | ®

v

v

Strongly connected components Strongly connected components via DFSes

Definition (Strongly connected)

u and v are strongly connected if there is a path v to v, and a path
v to u. Idea

» Run DFS on the reversed graph GR.

Definition (Strongly connected component) Note the finish times of all vertices

Maximal subset of strongly connected vertices.) . "
» Run DFS on G, but when starting a new “round”, always start

on the unmarked vertex with the highest finish-time.
» Each round finds and marks a strongly connected component.

Correctness See Chapter 22.5 in CLRS
Time O(n+ m)

Directed graphs Implicit Graph Representation

Implicit graph. Directed or undirected graph given by an implicit
representation:

) > initial vertex s
Introduction

v

» algorithm for generating the neighbours of a vertex.

v

Representation
Depth First Search / Breadth First Search
Topological Sorting

Applications Games, Artificial Intelligence, ...

v

v

v

Strongly Connected Components

Implicit Graphs / / \

v

Implicit Graph Example: Rubik's Cube Implicit Graph Example: Rubik’'s Cube
Rubics Cube.
> n+ m = 43.252.003.274.489.856.000 ~ 43quintillion Year | lower bound | upper bound

. ey 1981 | 18 52

What is the fewest moves to get the "tidy” cube, regardless how 7990 | 18 25

jumbled it is when you start? 1965 |15 39

1992 | 18 37

1995 | 18 29

1995 | 20 29

2005 | 20 28

2006 | 20 27

2007 | 20 26

2008 | 20 25

2008 | 20 23

2008 | 20 22

2010 | 20 20

Directed graphs

Introduction

v

v

Representation
Depth First Search / Breadth First Search
Topological Sorting

v

v

v

Strongly Connected Components

v

Implicit Graphs

