
Directed graphs

I Introduction
I Representation
I Depth First Search / Breadth First Search
I Topological Sorting
I Strongly Connected Components
I Implicit Graphs

Directed graphs

I Introduction
I Representation
I Depth First Search / Breadth First Search
I Topological Sorting
I Strongly Connected Components
I Implicit Graphs

Un-directed graph example: Transport Example: Streetmap – a graph?

Example: Streetmap – a graph? Example: Streetmap – a graph?

Some streets are one-way. This is modelled by directed graphs.

Directed graph

Definition (Directed graph)
Set of vertices, pairwise joined by directed edges.

0

1 2

3

4 5

6 8 7

9 10

11 12

path from 0 to 2
cycle

deg+(6) = 4, deg�(6) = 2

Application: WWW

I Vertex: Web page. Edge: Hyperlink.
I Webcrawling. Page rank.

http://computationalculture.net/what_is_in_pagerank/

Application: Automata, regular expressions

I Vertex: State. Edge: Transition.
I This automaton accepts “aaab” , there is a path from vertex

1 to vertex 10 that matches the string “aaab”
I Regular expressions can be represented by automata.

Application: Dependencies

I Vertex: subject. Edge: dependency.
I Are there any cyclic dependencies? Can we avoid that the

present subject depends on a future one?

merge sort

arrays

heaps

binary search

binary search trees

dictionaries

insertion sort stacks

queues

lists

union-find

MST

graphs strongly concon-
nected component

undirected graphs directed graphs

BFS/DFS topological sort

shortest
paths

Dijkstra’s

Application: Dependencies

arrays

merge sort

lists

stacks
queues

dictionaries

insertion sort

heaps

union-find

graphs

undirected graphs

binary search

binary search trees

MST

directed graphs

BFS/DFS

topological sort

shortest paths

Dijkstra’s

strongly conconnected component

Application: Garbage Collection

Vertex: Object. Edge: Reference.

Applications

graph vertices edges
internet webpage hyperlink
transport intersection oneway street
scheduling job precedence relation
infectious disease person disease transmission
citation network article citation
object graph objects pointers
object hierarchy class inheritance

Directed Graphs

LemmaP
v2V deg�(v) =

P
v2V deg+(v) = m

Proof.
Every edge has exactly one head and one tail.

0

1 2

3

4 5

6 8 7

9 10

11 12

Algorthmic problems on direted graphs

Reachability. Is there a path from s to t?
Shortest path. What is the shortest path from s to t?
Directed cycle. Does the graph contain a (directed) cycle?
Topological sort. Can we arrange the vertices such that all the

edges go the same direction?
Strong connectivity. Is there a path from anywhere to anywhere

else in the graph?
Transitive closure. Every path in a graph is represented by an edge

in the transitive closure of that graph.

Directed graphs

I Introduction
I Representation
I Depth First Search / Breadth First Search
I Topological Sorting
I Strongly Connected Components
I Implicit Graphs

Representation

I G is a directed graph with n vertices and m edges
I Representation. We need the following operations:

I PointsTo(u,v): Does u point to v?
I Neighbours(v): Returns all the vertices that v points to.

(Aka. all out-neighbours of v.)
I Insert(v,u): Add the edge (v , u) to G .

(unless already present).

Adjacency matrix

Directed graph G with n vertices and
m edges.
Adjacency matrix:

I n ⇥ n matrix A

I A [i , j] = 1 when i ! j , else 0.
Space O(n2).
Time
PointsTo(u,v) O(1) time.
Neighbours(v) O(n) time.
Insert(v,u) O(1) time.

Adjacency list

Directed graph G with n vertices and
m edges.
Adjacency list:

I Array A [0 . . . n � 1]
I A [i] contains a list of all

vertices that i points to.
Space
O(n +

P
v2V deg+(v)) = O(n +m).

Time
PointsTo(u,v) O(deg+(u)) time.
Neighbours(v)O(deg+(v)) time.
Insert(v,u)O(deg+(v)) time.

Representation

Data structure PointsTo Neighbours Insert Space
Adjacency matrix O(1) O(n) O(1) O(n2)
Adjacency list O(deg+(v)) O(deg+(v)) O(deg+(v)) O(n +m)

Directed graphs

I Introduction
I Representation
I Depth First Search and Breadth First Search
I Topological Sort
I Strongly Connected Components
I Implicit Graphs

Depth First Search / Breadth First Search

Depth First Search
I Let all vertices be unmarked.

Visit s.
I When visiting v :

I Mark v ,
I Recursively visit the

out-neighbours of v .

Breadth First Search
I Let all vertices be unmarked.
I Mark s, add s to queue Q.
I While Q is not empty:

I Dequeue v from Q,
I For all u such that v ! u

I Mark u, add u to Q.

Time O(n +m)

Directed graphs

I Introduction
I Representation
I Search
I Topological Sorting
I Strongly Connected Components
I Implicit Graphs

Topological Sorting and DAGs
DAG Directed Acyclic Graph. Does not contain a cycle.
Topological sorting. An ordering of the vertices on a horizontal line,
such that all edges go left to right.

0

3

1

2 4

5 6

0 1 6 4 3 2 5

Algorithmic problems
I Determine whether the input graph G is a DAG.
I Return a topological sorting of the vertices (in the affirmative case).

Goal: Show G is a DAG , G has topological sorting.
Give an algorithm for solving both.

Topological Sorting and DAGs

Lemma G has a topological sorting) G is a DAG.
Proof. Assume G has a topological sorting.

. . . i j . . .

If G is not a DAG, then it has a cycle, K = vk0 .
Let j be the vertex of K furthest to the right.
There is some edge j ! i in K , and thus in G .
But i is before j) not a topological sorting.

Topological Sorting and DAGs - Exercise

Come up with a strategy for finding a topological sorting of a given
DAG.

0

3

1

2 4

5 6

Topological Sorting and DAGs

Lemma. G is a DAG) G has a vertex v with deg�(v) = 0,
that is, in-degree 0. No other vertex points to v .

Proof. Assume every vertex v has in-degree � 1.
Walk backwards for n + 1 steps, starting at any vertex s.
There are only n vertices in G , so at least one vertex must have
been visited twice; we have found a cycle. G is not a DAG.

Topological Sorting and DAGs
Lemma G is a DAG) G admits a topological sorting

0

3

1

2 4

5 6

3

1

2 4

5 6

0 1 6 4 3 2 5

Proof by induction over the number of vertices in G .

I (Base Case) If the graph has only one vertex, it already sorted.
I (Induction Step)

I Find a vertex v with deg�(v) = 0.
I G � v is still a DAG. G � v has a topological sorting.
I Place v furthest to the left, followed by the sorting of G � v .

This is a valid topological sorting since no edges go into v !

Topological sorting – Implementation

Goal Efficient algorithm on the adjacency list representation.
Algorithm Based on the proof:

if G = ({v} , ;) then
print v .

else
find v with deg�(v) = 0
print v
TopSort(G � v)

end if
Correctness Follows from the proof.
Time Repeat until all but one vertex is removed: n times.

I Find a vertex of in-degree 0 How much time for this?
I Remove it from the graph. Every edge is removed

exactly once) Total time O(m) on this step.

Topological sorting – Implementation 1 (not smart)

Solution 1 Construct the reversed graph G
R :

if G = ({v} , ;) then
print v .

else
find v with deg�(v) = 0
print v
TopSort(G � v)

end if

0

3

1

2 4

5 6G
R

Linear search in G
R to find a vertex of out-degree 0.

Time Repeat until all but one vertex is removed: n times.
I Find a vertex of in-degree 0 O(n) time
I Remove it from the graph Every edge is removed

exactly once) Total time O(m) on this step.
Total O(n2 +m) = O(n2).

Topological sorting – Implementation 2 (smart)

Solution 2 Maintain information about the indegrees of all vertices.
Keep a linked list of vertices of degree 0.

0

3

1

2 4

5 6

Initialising O(n +m) time.

(v , deg�(v)) table
0 0
1 1
2 2
3 4
4 2
5 3
6 0

0-deg� list
0 ! 6

Repeat until all but one vertex is removed: n times.
I Find a vertex of in-degree 0 O(1) time
I Remove it from the graph Every edge is removed

exactly once) Total time O(m) on this step.
Total O(n +m).

Topological Sorting and DAGs

Lemma
G is a DAG , G has a topological sorting.

Theorem
There is an O(n +m) time algorithm that determines whether G is
a DAG, and, in the affirmative case outputs a topological sorting.

Topological Sorting via DFS
Idea:

I Run DFS on G

I When returning from the recursive call on vertex v , push v to
a stack.

I Print stack.
Time O(m + n)
Intuition Recursively finds vertices of out-degree 0.

0

3

1

2 4

5 6

6 0 1 4 3 2 5

6 0 1 4 3 2 5

Directed graphs

I Introduction
I Representation
I Depth First Search / Breadth First Search
I Topological Sorting
I Strongly Connected Components
I Implicit Graphs

Strongly connected components

Definition (Strongly connected)
u and v are strongly connected if there is a path u to v , and a path
v to u.

Definition (Strongly connected component)
Maximal subset of strongly connected vertices.

Strongly connected components via DFSes

Idea
I Run DFS on the reversed graph G

R .
Note the finish times of all vertices.

I Run DFS on G , but when starting a new “round”, always start
on the unmarked vertex with the highest finish-time.

I Each round finds and marks a strongly connected component.
Correctness See Chapter 22.5 in CLRS
Time O(n +m)

Directed graphs

I Introduction
I Representation
I Depth First Search / Breadth First Search
I Topological Sorting
I Strongly Connected Components
I Implicit Graphs

Implicit Graph Representation

Implicit graph. Directed or undirected graph given by an implicit
representation:

I initial vertex s

I algorithm for generating the neighbours of a vertex.
Applications Games, Artificial Intelligence, . . .

Implicit Graph Example: Rubik’s Cube

Rubics Cube.
I n +m = 43.252.003.274.489.856.000 ' 43quintillion

What is the fewest moves to get the “tidy” cube, regardless how
jumbled it is when you start?

Implicit Graph Example: Rubik’s Cube

Year lower bound upper bound
1981 18 52
1990 18 42
1992 18 39
1992 18 37
1995 18 29
1995 20 29
2005 20 28
2006 20 27
2007 20 26
2008 20 25
2008 20 23
2008 20 22
2010 20 20

Directed graphs

I Introduction
I Representation
I Depth First Search / Breadth First Search
I Topological Sorting
I Strongly Connected Components
I Implicit Graphs

