
Technical University of Denmark

Written examination, May 17, 2017.

Course name: Algorithms and Data Structures 1

Course number: 02105

Aids: Written aids. It is not permitted to bring a calculator.

Duration: 4 hours.

Weights: Exercise 1 - 24 %, Exercise 2 - 20 %, Exercise 3 - 16 %, Exercise 4 - 15 %, Exercise 5 - 25 %. The weights are
approximate. The grade is given based on an overall assessment.

All exercise should be answered by filling out the areas below the description. As your solution to the exam, just hand in
the page and the following pages. If you need more space, you may use extra pieces of paper and hand these in along
with your solution.

Asymptotic bounds should be as tight as possible. Unless otherwise specified, the base of all logarithms is 2 and logk n
means (log n)k.

Name:

Student ID:

Exam 02105, Spring 2017 page 1 of 14



1 Complexity

1.1 (6 %) For each statement below, mark whether or not it is correct:

Yes No
1
4 n3 + n2 log n+ 17 · n2 = Θ(n3)

1017 + (n3)2 + log2 n= O(n5)

42 log n+
p

n+ n1/3 = Ω(
p

n)

2log n + n1,5

3030 + log10 n= Θ(n)

(3 log2 n+ 55 log(n10) + 8 log n) · log n= Ω(log10 n)

1.2 (6 %) Arrange the following functions in increasing order according to asymptotic growth. That is, if g(n) imme-
diately follows f (n) in your list, it must hold that f (n) = O (g(n)).

8
p

n log(2n) 7n3 1n 3 log2 n n4/2

Solution:

1.3 (12 %) State the running time for each of the following algorithms. Write your answer in O-notation as a function
of n.

ALG1(n)
c = 0
for i = 1 to bn/3c do

c = c + 1
end for
for j = 1 to bn/5c do

c = c + 1
end for

Solution:

ALG2(n)
if n≤ 1 then

return 1
else

return 1+ALG2(n− 2)
end if

Solution:

ALG3(n)
for j = 1 to n do

i = n
while i ≥ 3 do

i = bi/2c
end while

end for

Solution:

Exam 02105, Spring 2017 page 2 of 14



2 Data Structures

Consider the following forest of trees representing a family of sets in a union find data structure constructed using the
quick union algorithm.

4

5

2

12
10

1

9

7 8

0

3

6

11

14

15

13

16

1817

2.1 (4 %) State the results of the following FIND(·) operations.

FIND(2) :

FIND(14) :

FIND(0) :

FIND(8) :

FIND(12) :

FIND(17) :

2.2 (4 %) Assume that we now use path compression on the forest above. Show the forest of trees after a FIND(8)
operation.

Solution:

Exam 02105, Spring 2017 page 3 of 14



2.3 (4 %) Consider the following max heaps H1 and H2.

32

10

91

8

7 6

29

10

91

8

3 6

H1 H2

Draw H1 after an INSERT operation with key 12.

Solution:

2.4 (4 %) Draw H2 after an EXTRACT-MAX operation.

Solution:

2.5 (4 %) We want to support the DELETE-MAX() operation on each of the following data structures. DELETE-MAX()
should remove the largest element in the data structure and then reestablish the data structure over the remaining ele-
ments. As an example, if the data structure is a min heap with elements {6, 32,18, 7,2}, DELETE-MAX() removes element
32 and re-establishes a min heap with the elements {6, 18,7, 2}. For each of the data structures, state the time needed
to perform a DELETE-MAX() operation in O-notation as a function of n, where n is the number of elements in the data
structure.

Singly-linked list:

Doubly-linked list:

Max heap:

Min heap:

Binary search tree:

Exam 02105, Spring 2017 page 4 of 14



3 Graphs

Consider the following graph G.

0

1

2 3

4 5
6 7

8 9 10 11

3.1 (4 %) Show the DFS tree for G when starting in node 0 and state the discovery and finish times for each node.
Assume that the adjacency lists are sorted in increasing order.

Solution:

0

1

2 3

4 5
6 7

8 9 10 11

3.2 (4 %) Show the BFS tree for G when starting in node 0 and state the distance for each node. Assume that the
adjacency lists are sorted in increasing order.

Solution:

0

1

2 3

4 5
6 7

8 9 10 11

Exam 02105, Spring 2017 page 5 of 14



3.3 (4 %) Consider the graph below. Show a shortest path tree for the graph starting at node 0. State the length of
the shortest path from node 0 to each node.

0

1

2 3

4 5
6 7

8 9 10 11

1

4

3

5

8 3

2

8

7

6
6

4

1 4

4

4 7

2

1

6

Solution:

0

1

2 3

4 5
6 7

8 9 10 11

3.4 (4 %) Consider the graph below. Show a minimum spanning tree and state the total weight of the tree.

0

1

2 3

4 5
6 7

8 9 10 11

7

3

5

8 3

2
1

8

7

6
6

4

1 4

4

4 7

2

3

6

Solution:

0

1

2 3

4 5
6 7

8 9 10 11

Total weight:

Exam 02105, Spring 2017 page 6 of 14



4 Trees

This exercise is about rooted binary trees. Any node x has fields x .parent, x .left and x .right denoting the parent, left
child, and right child of x , respectively. The root r has r.parent= null. Furthermore, any node has a weight given by the
field x .weight.

4.1 (1 %) Let x be a node in the tree. The node x is skewed according to the following conditions.

• If x is a leaf then x is skewed.

• If x is an internal node with two children then x is skewed if and only if x .left.weight< x .weight< x .right.weight.

• If x is an internal node with a left child but no right child then x is skewed if and only if x .left.weight< x .weight.

• If x is an internal node with a right child but no left child then x is skewed if and only if x .weight< x .right.weight.

Consider the following tree. Mark all skewed nodes in the tree with a cross.

Solution:

8

10

6 13

12

15

15

14

11

77

1

Exam 02105, Spring 2017 page 7 of 14



4.2 (6 %) Give an algorithm, SKEWED(X), that given a node x returns true if and only if the node is skewed. Write
your algorithm in pseudocode and analyze the running time of your algorithm as a function of n, where n is the number
of nodes in the tree.

Solution:

Exam 02105, Spring 2017 page 8 of 14



4.3 (8 %) Give a recursive algorithm, SKEWCOUNT(x), that, given the root node, computes the number of skewed
nodes in the tree. Write your algorithm in pseudocode and analyze the running time of your algorithm as a function of
n, where n is the number of nodes in the tree.

Solution:

Exam 02105, Spring 2017 page 9 of 14



5 Super Mario Run

start

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

start

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

(a) (b)

goal
goal

Figure 1: 8× 8 Mario world and corresponding Mario graph.

A Mario world M consists of a k×k grid. Each field in the grid is empty or brick. Two empty fields are marked as start
and goal (see Fig. 5(a)). The goal of the game is to move the player, called Mario, from the start field to the goal field.
When Mario is in field (x , y) he has the following options:

Forward Mario moves to the field (x + 1, y). This move is possible if (x + 1, y) is empty and (x + 1, y − 1) is brick.

Jump Mario moves to the field (x + 1, y + 2). This move is possible if (x + 1, y + 2) is empty, (x , y + 1) is empty, and
(x + 1, y + 1) is brick.

Fall Mario moves to the field (x + 1, y ′) where y ′ < y is the maximal value y ′ such that (x + 1, y ′ − 1) is brick and
(x + 1, y), (x + 1, y − 1), . . . , (x + 1, y ′) are empty.

For instance, Mario in field (4, 4) can move forward to (5, 4) or jump to field (5,6). A move is valid if the move can be
done according to the above rules. All fields that can be reached via valid moves from the start field are the valid fields.
For example, (4,4) is a valid field, since it can be reached from the start field in (1,2) doing the sequence of valid moves:
forward, forward, jump.

A Mario world M defines a directed graph G with n vertices and m edges (see Fig. 5(b)). All valid fields correspond
to a vertex and the valid moves define the edges (there is an edge from field (x , y) to field (x ′, y ′) if Mario can move
from (x , y) to (x ′, y ′) with a valid move). The edges corresponding to forward, jump and fall are denoted by forward
edges, jump edges and fall edges.

5.1 (3 %) Let M be a Mario world defined on a k× k grid and let G be the corresponding Mario graph.

Give the maximum number of nodes n that can appear in G as a function of k.

Solution: � O(log k) � O(
p

k) � O(k) � O(k log k) � O(k2) � O(2k)

Give the maximum number of edges m that can appear in G as a function of k.

Solution: � O(log k) � O(
p

k) � O(k) � O(k log k) � O(k2) � O(2k)

Exam 02105, Spring 2017 page 10 of 14



5.2 (6 %) We are now interested in checking if it is possible to go from the start field to the goal field. A Mario graph
is valid if there exists a path from start to goal. Give an algorithm that given a Mario graph G, decides whether or not
there is a path from the start field to the goal field. Analyze the running time of your algorithm as a function of n and m.

Solution:

Exam 02105, Spring 2017 page 11 of 14



5.3 (6 %) It’s tough work for Mario to jump and fall. Thus, we associate a price with each edge e, price(e), such that
a forward edge costs 1, a jump edge costs 2 1

2 and a fall edge costs 4. We define the price of a path to be the sum of the
prices on the edges of the path. Give an algorithm which, given a valid Mario graph, finds a cheapest path from the start
field to the goal field. Analyze the running time of your algorithm as a function of n and m.

Solution:

Exam 02105, Spring 2017 page 12 of 14



5.4 (6 %) Now, we’re also interested in collecting a mushroom during the game. A mushroom graph is a valid Mario
graph where a single node c is marked as a mushroom node and there exists a path from start to goal going through
c. Give an algorithm which, given a mushroom graph, finds a cheapest path from the start field to the goal field going
through c. Analyze the running time of your algorithm as a function of n and m.

Solution:

Exam 02105, Spring 2017 page 13 of 14



5.5 (4 %) A k-mushroom graph is a valid Mario graph where k nodes c0, . . . , ck−1 are marked as mushroom nodes and
for each mushroom ci , 0 ≤ i ≤ k − 1, there exists a path from start to goal going through ci . A mushroom path in a
k-mushroom graph is a path from start to goal going through at least one of the k mushrooms. Give an algorithm which,
given a k-mushroom graph, finds a cheapest mushroom path from the start field to the goal field. Analyze the running
time of your algorithm as a function of n, m and k.

Solution:

Exam 02105, Spring 2017 page 14 of 14


