Introduction

- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3

Philip Bille

Algorithms and Data Structures

- Algorithmic problem. Precisely defined relation between input and output.
- Algorithm. Method to solve an algorithmic problem.
 - Discrete and unambiguous steps.
 - Mathematical abstraction of a program.
- Data structure. Method for organizing data to enable queries and updates.

Example: Find max

Introduction

Algorithm 1

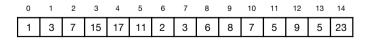
Algorithm 2

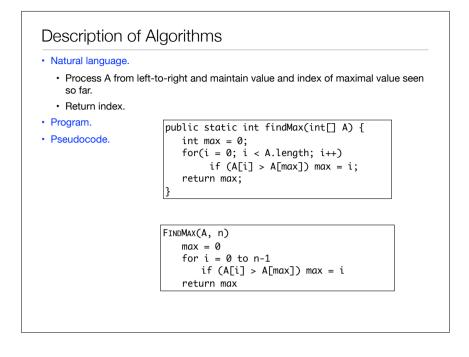
Algorithm 3

Peaks

Algorithms and Data Structures

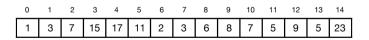
- Find max. Given a array A[0..n-1], find an index i, such that A[i] is maximal.
 - Input. Array A[0..n-1].
 - Output. An index i such that $A[i] \ge A[j]$ for all indices $j \ne i$.
- Algorithm.
 - Process A from left-to-right and maintain value and index of maximal value seen so far.
 - Return index.





Peaks

- Peak. A[i] is a peak if A[i] is as least as large as it's neighbors:
- A[i] is a peak if A[i-1] \leq A[i] \geq A[i+1] for i \in {1, ..., n-2}
- A[0] is a peak if A[0] ≥ A[1].
- A[n-1] is a peak if A[n-2] \leq A[n-1].



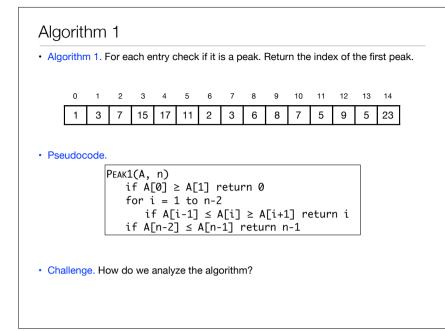
- Peak finding. Given a array A[0..n-1], find an index i such that A[i] is a peak.
 - Input. A array A[0..n-1].
 - Output. An index i such that A[i] is a peak.

Introduction

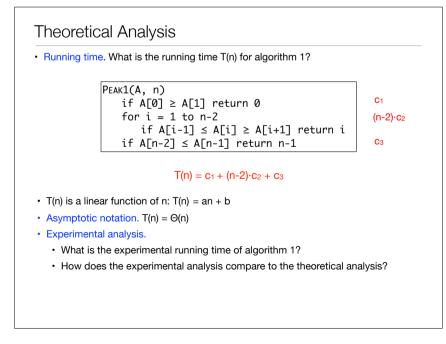
- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3

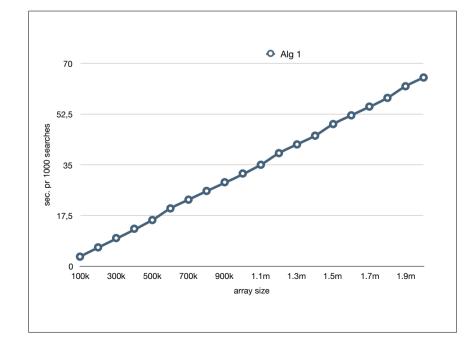
Introduction

- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3



Theoretical Analysis Running time/time complexity. T(n) = number of steps that the algorithm performs on input of size n. Steps. Read/write to memory (x := y, A[i], i = i + 1, ...) Arithmetic/boolean operations (+, -, *, /, %, &&, ||, &, |, ^, ~) Comparisons (<, >, =<, =>, =, ≠) Program flow (if-then-else, while, for, goto, function call, ..) Worst-case time complexity. Maximal running time over all inputs of size n.





Peaks

- Algorithm 1 finds a peak in $\Theta(n)$ time.
- Theoretical and experimental analysis agrees.
- Challenge. Can we do better?

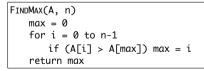
Introduction

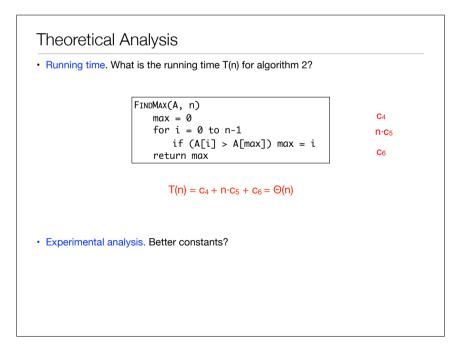
- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3

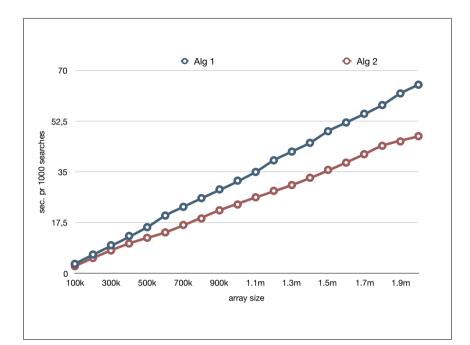
Algorithm 2

- Observation. A maximal entry A[i] is a peak.
- Algorithm 2. Find a maximal entry in A with FINDMAX(A, n).

2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 17 11 2 3 6 3 15 8 23 7 7 5 9 5







Introduction

- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3

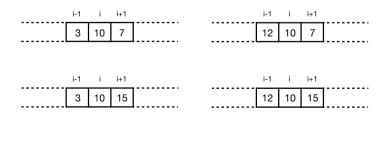
Peaks

- · Theoretical analysis.
 - Algorithm 1 and 2 find a peak in $\Theta(n)$ time.
- Experimental analysis.
 - Algorithm 1 and 2 run in $\Theta(n)$ time in practice.
 - Algorithm 2 is a constant factor faster than algorithm 1.
- Challenge. Can we do significantly better?

Algorithm 3

· Clever idea.

- Consider any entry A[i] and it's neighbors A[i-1] and A[i+1].
- Where can a peak be relative to A[i]?
 - Neighbor are $\leq A[i] \implies A[i]$ is a peak.
- Otherwise A is increasing in at least one direction ⇒ peak must exist in that direction.



· Challenge. How can we turn this into a fast algorithm?

Algorithm 3

• Algorithm 3.

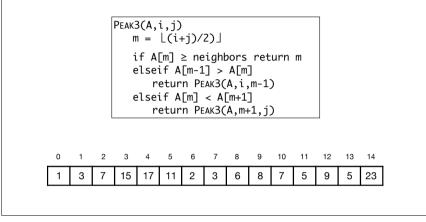
- Consider the middle entry A[m] and neighbors A[m-1] and A[m+1].
- If A[m] is a peak, return m.
- Otherwise, continue search recursively in half with the increasing neighbor.

_	-			3			-					_			_
I	1	3	7	15	17	11	2	3	6	8	7	5	9	5	23

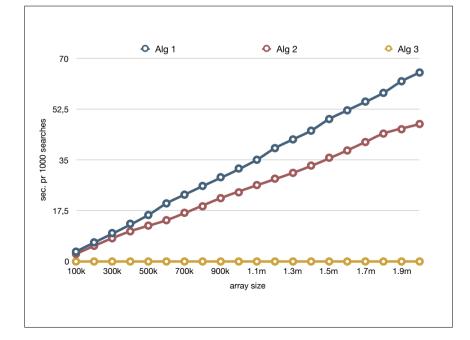
Algorithm 3

• Algorithm 3.

- Consider the middle entry A[m] and neighbors A[m-1] and A[m+1].
- If A[m] is a peak, return m.
- Otherwise, continue search recursively in half with the increasing neighbor.



	PEAK3(A,i,j) m = ⊥(i+j)/2)」				
	if A[m] ≥ neighbors return m elseif A[m-1] > A[m]				
Running time.	return PEAK3(A,i,m-1)				
• A recursive call takes constant time.	elseif A[m] < A[m+1]				
How many recursive calls?	return PEAK3(A,m+1,j)				
• A recursive call halves size of interval.	We stop when array has size 1.				
 1st recursive call: n/2 					
• 2 nd recursive call: n/4					
•					
 kth recursive call: n/2^k 					
•					
$\bullet \implies$ After ~log ₂ n recursive call array has	as size ≤ 1.				
$ ightarrow \Longrightarrow$ Running time is $\Theta(\log n)$					
Experimental analysis. Significantly bet	tter?				



Peaks

• Theoretical analysis.

- Algorithm 1 and 2 finds a peak in $\Theta(n)$ time.
- Algorithm 3 finds a peak in Θ(log n) time.
- Experimental analysis.
 - Algorithm 1 and 2 run in $\Theta(n)$ time in practice.
 - Algorithm 2 is a constant factor faster than algorithm 1.
 - Algorithm 3 is much, much faster than algorithm 1 and 3.

Introduction

- Algorithms and Data Structures
- Peaks
 - Algorithm 1
 - Algorithm 2
 - Algorithm 3