
Philip Bille

Introduction to Data Structures

• Data structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

Introduction to Data Structures

• Data structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

• Data structure. Method for organizing data for efficient access, searching,
manipulation, etc.

• Goal.

• Fast.

• Compact

• Terminology.

• Abstract vs. concrete data structure.

• Dynamic vs. static data structure.

Data Structures

Introduction to Data Structures

• Data structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

• Stack. Maintain dynamic sequence (stack) S supporting the following operations:

• PUSH(x): add x to S.

• POP(): remove and return the most recently added element in S.

• ISEMPTY(): return true if S is empty.

Stack

PUSH(28)

28

3

4

18
16

3

4

18

16 POP() POP() PUSH(7)

3

4

18

16

7

4

18

16

4

18

16

• Queue. Maintain dynamic sequence (queue) Q supporting
the following operations:

• ENQUEUE(x): add x to Q.

• DEQUEUE(): remove and return the first added element in

Q.

• ISEMPTY(): return true if S is empty.

Queue

8 4 15

8 4 15 1

8 4 15 1 22

4 15 1 22

15 1 22

15 1 22 6

ENQUEUE(1)

ENQUEUE(22)

DEQUEUE()

DEQUEUE()

ENQUEUE(6)

• Stacks.

• Virtual machines

• Parsing

• Function calls

• Backtracking

• Queues.

• Scheduling processes

• Buffering

• Breadth-first searching

Applications
• Stack. Stack with capacity N

• Data structure.

• Array S[0..N-1]

• Index top. Initially top = -1

• Operations.

• PUSH(x): Add x at S[top+1], top = top + 1

• POP(): return S[top], top = top - 1

• ISEMPTY(): return true if top = -1.

• Check for overflow and underflow in PUSH and POP.

Stack Implementation

16 18 4 3 28

top

N = 10

• Time

• PUSH in Θ(1) time.

• POP in Θ(1) time.

• ISEMPTY in Θ(1) time.

• Space.

• Θ(N) space.

• Limitations.

• Capacity must be known.

• Wasting space.

Stack Implementation

16 18 4 3 28

top

N = 10
• Queue. Queue with capacity N.

• Data structure.

• Array Q[0..N-1]

• Indices head and tail and a counter.

• Operations.

• ENQUEUE(x): add x at S[tail], update count og tail cyclically.

• DEQUEUE(): return Q[head], update count og head cyclically.

• ISEMPTY(): return true if count = 0.

• Check for overflow and underflow in DEQUEUE and ENQUEUE.

Queue Implementation

8 4 15 1 22

head

N = 10

tail

count = 5

• Time.

• ENQUEUE in Θ(1) time.

• DEQUEUE in Θ(1) time.

• ISEMPTY in Θ(1) time.

• Space.

• Θ(N) space.

• Limitations.

• Capacity must be known.

• Wasting space.

Queue Implementation

8 4 15 1 22

head

N = 10

tail

count = 5
• Stack.

• Time. PUSH, POP, ISEMPTY in Θ(1) time.

• Space. Θ(N)

• Queue.

• Time. ENQUEUE, Dequeue, ISEMPTY in Θ(1) time.

• Space. Θ(N)

• Challenge. Can we get linear space and constant time?

Stacks and Queues

8 4 15 1 22

head

N = 10

tail

count = 5

16 18 4 3 28

top

N = 10

Introduction to Data Structures

• Data structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

• Linked lists.

• Data structure to maintain dynamic sequence of elements in linear space.

• Sequence order determined by pointers/references called links.

• Fast insertion and deletion of elements and contiguous sublists.

• Singly-linked vs doubly-linked.

Linked Lists

null 7 42 18 23 5 null

head

7 42 18 23 5 null

head

• Doubly-linked lists in Java.

Linked Lists

class Node {
int key;
Node next;
Node prev;

}

Node head = new Node();
Node b = new Node();
Node c = new Node();
head.key = 7;
b.key = 42;
c.key = 18;

head.prev = null;
head.next = b;
b.prev = head;
b.next = c;
c.prev = b;
c.next = null;

prev key next

null 7 null null 42 null null 18 null

head b c

null 7 42 18 null

head b c

• Simple operations.

• SEARCH(head, k): return node with key k. Return null if it does not exist.

• INSERT(head, x): insert node x in front of list. Return new head.

• DELETE(head, x): delete node x in list.

Linked Lists

null 7 42 18 23 5 null

head

7 42 18 23 5 null

head

• Operations in Java.

• Ex. Let p be a new with key 10 and let q be node with key 23 in list. Trace execution
of Search(head,18), Insert(head,p) og Delete(head,q).

Linked Lists

null 7 42 18 23 5 null

head

Node Search(Node head, int value) {
Node x = head;
while (x != null) {
 if (x.key == value) return x;
 x = x.next;
}
return null;

}

Node Insert(Node head, Node x) {
x.prev = null;
x.next = head;
head.prev = x;
return x;

}

Node Delete(Node head, Node x) {
if (x.prev != null)
 x.prev.next = x.next;
else head = x.next;
if (x.next != null)
 x.next.prev = x.prev;
return head;

}

• Time.

• SEARCH in Θ(n) time.

• INSERT and DELETE in Θ(1) time.

• Space.

• Θ(n)

Linked Lists

null 7 42 18 23 5 null

head

7 42 18 23 5 null

head

• Ex. Consider how to implement stack and queue with linked lists efficiently.

• Stack. Maintain dynamic sequence (stack) S supporting the following operations:

• PUSH(x): add x to S.

• POP(): remove and return the most recently added element in S.

• ISEMPTY(): return true if S is empty.

• Queue. Maintain dynamic sequence (queue) Q supporting the following operations:

• ENQUEUE(x): add x to Q.

• DEQUEUE(): remove and return the first added element in Q.

• ISEMPTY(): return true if S is empty.

Stack and Queue Implementation
• Stacks and queues using linked lists

• Stack.

• Time. PUSH, POP, ISEMPTY in Θ(1) time.

• Space. Θ(n)

• Queue.

• Time. ENQUEUE, Dequeue, ISEMPTY in Θ(1) time.

• Space. Θ(n)

Stack and Queue Implementation

• Linked list. Flexible data structure to
maintiain sequence of elements.

• Other linked data structures: cyclic lists,
trees, graphs, …

Linked Lists

15

208

14

13

113

1

root

8

null null

20

null

1

null null

3

null

14

null

11

null null

13

null

15 Introduction to Data Structures

• Data structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

• Challenge. Can we implement a stack efficiently with arrays?

• Do we need a fixed capacity?

• Can we get linear space and constant time?

Stack Implementation with Array
• Goal.

• Implement a stack using arrays in Θ(n) space for n elements.

• As fast as possible.

• Focus on PUSH. Ignore POP and ISEMPTY for now.

• Solution 1

• Start with array of size 1.

• PUSH(x):

• Allocate new array of size + 1.

• Move all elements to new array.

• Delete old array.

Dynamic Arrays

• PUSH(x):

• Allocate new array of size + 1.

• Move all elements to new array.

• Delete old array.

• Time. Time for n PUSH operations?

• ith PUSH takes Θ(i) tid.

• ⇒ total time is 1 + 2 + 3 + 4 + … + n = Θ(n2)

• Space. Θ(n)

• Challenge. Can we do better?

Dynamic Arrays
• Idea. Only copy elements some times

• Solution 2.

• Start with array of size 1.

• PUSH(x):

• If array is full:

• Allocate new array of twice the size.

• Move all elements to new array.

• Delete old array.

Dynamic Arrays

• PUSH(x):

• If array is full:

• Allocate new array of twice the size.

• Move all elements to new array.

• Delete old array.

• Time. Time for n PUSH operations?

• PUSH 2k takes Θ(2k) time.

• All other PUSH operations take Θ(1) time.

• ⇒ total time < 1 + 2 + 4 + 8 + 16 + … + 2log n + n = Θ(n)

• Space. Θ(n)

Dynamic Arrays
• Stack with dynamic array.

• n PUSH operations in Θ(n) time and plads.

• Extends to n PUSH, POP og ISEMPTY operations in Θ(n) time.

• Time is amortized Θ(1) per operation.

• With more clever tricks we can deamortize to get Θ(1) worst-case time per

operation.

• Queue with dynamic array.

• Similar results as stack.

• Global rebuilding.

• Dynamic array is an example of global rebuilding.

• Technique to make static data structures dynamic.

Dynamic Arrays

Stack and Queues
Data structure PUSH POP ISEMPTY Space

Array with capacity N Θ(1) Θ(1) Θ(1) Θ(N)

Linked List Θ(1) Θ(1) Θ(1) Θ(n)

Dynamic Array 1 Θ(n)† Θ(1)† Θ(1) Θ(n)

Dynamic Array 2 Θ(1)† Θ(1)† Θ(1) Θ(n)

Dynamic Array 3 Θ(1) Θ(1) Θ(1) Θ(n)

† = amortized

Introduction to Data Structures

• Data structures

• Stacks and Queues

• Linked Lists

• Dynamic Arrays

