
Philip Bille

Directed Graphs

• Directed Graphs

• Representation

• Search

• Topological Sorting

• Directed Acyclic Graphs

• Strongly Connected Components

• Implicit Graphs

Directed Graphs

• Directed Graphs

• Representation

• Search

• Topological Sorting

• Directed Acyclic Graphs

• Strongly Connected Components

• Implicit Graphs

• Directed graph. Set of vertices pairwise joined by directed edges.

Directed Graphs

0

7

9 10

1211

1

3

2

5

6 8

4

cycle

path from 0 to 3

deg+(6) = 4, deg-(6) = 2

• Vertex = intersection, edge = (one-way) road.

Road Networks

18/03/14 15:11Google Maps

Page 1 of 1https://www.google.dk/maps/@55.6781521,12.5748775,17z

Map data ©2014 Google 50 m

• Vertex = object, edge = pointer/reference.

• Which objects are reachable from a root?

Garbage Collection

ro
ot

s

• Vertex = homepage, edge = hyperlink.

• Web Crawling

• PageRank

WWW

http://computationalculture.net/article/what_is_in_pagerank

• Vertex = state, edge = state transition.

• Does the automaton accept “aab” = is there a path from 1 to 10 that matches

"aab"?

• Regular expressions can be represented as automata.

Automata and Regular Expressions

a

�

8

76

54

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

R = a·(a∗)·(b|c)

• Vertices = topics, edge = dependency.

• Are there any cyclic dependencies? Can we find an ordering of vertices that avoids

cyclic dependencies?

Dependencies

tabeller

hægtede lister

stakke

køer

grafer

orienterede graferuorienterede grafer

binær søgning
topologisk sortering

hob

korteste veje

flettesortering indsættelsessortering

ordbøger

BFS/DFS

binære søgetræer

Dijkstras algoritme

MST

stærke sammenhængkomponenter

foren og find

Dependencies

tabeller

hægtede lister

stakke

køer

grafer

orienterede grafer

uorienterede grafer
binær søgning

topologisk sortering

hob

korteste veje

flettesortering

indsættelsessortering

ordbøger

BFS/DFS

binære søgetræer

Dijkstras algoritme

MST

stærke sammenhængkomponenter

foren og find

Applications

Graph Vertices Edges

internet homepage hyperlink

transport intersection one-way road

scheduling job precedence relation

disease outbreak person infects relation

citation paper citation

object graph objects pointers/references

object hierarchy class inheritance

control-flow code jump

• Lemma. ∑
v∈V

 deg-(v) = ∑
v∈V

 deg+(v) = m.

• Bevis. Every edge has exactly one start and end vertex.

Directed Graphs

0

7

9 10

1211

1

3

2

5

6 8

4

• Path. Is there a path from s to t?

• Shortest path. What is the shortest path from s to t.

• Directed acyclic graph. Is there a cycle in the graph?

• Topological sorting. Can we order the vertices such that all edges are directed in

same direction?

• Strongly connected component. Is there a path between all pairs of vertices?

• Transitive closure. For which vertices is there a path from v to w?

Algorithmic Problems on Directed Graphs

Directed Graphs

• Directed Graphs

• Representation

• Search

• Topological Sorting

• Directed Acyclic Graphs

• Strongly Connected Components

• Implicit Graphs

• G directed graph with n vertices and m edges.

• Representation. We need the following operations on directed graphs.

• POINTSTO(v, u): determine if v points to u.

• NEIGHBORS(v): return all vertices that v points to.

• INSERT(v, u): add edge (v, u) to G (unless it is already there).

Representation

0

7

9 10

1211

1

3

2

5

6 8

4

• Directed graph G with n vertices and m edges.

• Adjacency matrix.

• 2D n ⨉ n array A.

• A[i,j] = 1 if i points to j, 0 otherwise.

• Space. O(n2)

• Time.

• POINTSTO in O(1) time.

• NEIGHBORS(v) in O(n) time.

• INSERT(v, u) in O(1) time.

Adjacency Matrix

0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 1 0 0 0 0 0 0 0 0 0
3 0 0 1 0 1 0 0 0 0 0 0 0 0
4 0 0 0 0 0 1 0 0 0 0 0 0 0
5 0 0 1 1 0 0 0 0 0 0 0 0 0
6 1 0 0 0 0 1 0 0 1 1 0 0 0
7 0 0 0 0 0 0 1 0 0 1 0 0 0
8 0 0 0 0 0 0 1 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 1 0 0 0
12 0 0 0 0 0 0 0 0 0 1 0 1 0

0

7

9 10

1211

1

3

2

5

6 8

4

• Directed graph G with n vertices and m
edges.

• Adjacency list.

• Array A[0..n-1].

• A[i] is a linked of all nodes that i

points to.

• Space. O(n + ∑
v∈V

 deg+(v)) = O(n + m)

• Time.

• POINTSTO, NEIGHBORS and INSERT in

O(deg(v)) time.

Adjacency List

0
1
2
3
4
5
6
7
8
9

10
11
12

1 4

0 3
2 4
5

2 9
0
6
6

10
12
9
9 11

0

7

9 10

1211

1

3

2

5

6 8

4

8 95
32

Repræsentation

Data structure POINTSTO NEIGHBORS INSERT Space

adjacency matrix O(1) O(n) O(1) O(n2)

adjacency list O(deg+(v)) O(deg+(v)) O(deg+(v)) O(n+m)

Directed Graphs

• Directed Graphs

• Representation

• Search

• Topological Sorting

• Directed Acyclic Graphs

• Strongly Connected Components

• Implicit Graphs

• Depth first search from s.
• Unmark all vertices and visit s.

• Visit vertex s:

• Mark v.

• Visit all unmarked neighbors that v points to

recursively.

• Breadth first search from s.

• Unmark all vertices and initialize queue Q.

• Mark s and Q.ENQUEUE(s).

• While Q is not empty:

• v = Q.DEQUEUE().

• For each unmarked neighbor u that v points to.

• Mark u.

• Q.ENQUEUE(u).

• Time. O(n + m)

Søgning

s

s

Directed Graphs

• Directed Graphs

• Representation

• Search

• Topological Sorting

• Directed Acyclic Graphs

• Strongly Connected Components

• Implicit Graphs

• Topological sorting. Ordering of vertices v0, v1, …, vn-1 from left to right such that all
edges are directed to the right.

• Challenge. Compute a topological sorting or determine that none exists.

Topological Sorting

0 1

432

5 6

0 1 6 4 3 2 5

• Algorithm.

• Find v with in-degree 0.

• Output v and recurse on G - {v}.

Topological Sorting

0 1 6 4 3 2 5

0 1

432

5 6

1

432

5 6

0 1

432

5 6

0 1

6

432

5

0 1

432

5 6

0 1 6 4 3 2 5

• Correctness?

• Lemma. G has topological sorting ⟺ G has vertex v with in-degree 0 and G - {v}
has topological sorting.

Topological Sorting

0 1 6 4 3 2 5

0 1

432

5 6

1

432

5 6

• Challenge. How do we implement algorithm efficiently on adjacency list
representation?

Topological Sorting

0 1 6 4 3 2 5

0 1

432

5 6

1

432

5 6

• Solution 1. Construct reverse graph GR.

• Search in adjacency list representation of GR to find vertex v with in-degree 0.

• Remove v and edges out of v.

• Put v leftmost.

• Repeat.

• Time per vertex.

• Find vertex v with in-degree 0: O(n).

• Remove edges out of v: O(deg+(v))

• Total time. O(n2 + ∑
v∈V

 deg+(v)) = O(n2 + m) = O(n2).

Topological Sorting

0 1

432

5 6

• Solution 2. Maintain in-degree of every vertex + linked list of all vertices with in-
degree 0.

• Remove v and edges out of v.

• Put v leftmost.

• Repeat

• Initialization. O(n + m)

• Time per vertex.

• Remove vertex v with in-degree 0: O(1).

• Remove edges out of v: O(deg+(v))

• Total time. O(n + ∑
v∈V

 deg+(v)) = O(n + m) = O(n + m).

Topological Sorting

0 1

432

5 6

0 0
1 1
2 2
3 4
4 2

5 3

deg—tabel

0-deg—

0 6

Directed Graphs

• Directed Graphs

• Representation

• Search

• Topological Sorting

• Directed Acyclic Graphs

• Strongly Connected Components

• Implicit Graphs

• Directed acyclic graph (DAG). G is a DAG if it contains no (directed) cycles.

• Challenge. Determine whether or not G is a DAG.

• Equivalence of DAGs and topological sorting. G is a DAG ⟺ G has a topological

sorting (see exercises).

• Algorithm.

• Compute a topological sorting.

• If success output yes, otherwise no.

• Time. O(n+ m)

Directed Acyclic Graphs

0 1

432

5 6

• Def. v and u are strongly connected if there is a path from v to u and u to v.

• Def. A strongly connected component is a maximal subset of strongly connected

vertices.

• Theorem. We can compute the strongly connected components in a graph in O(n +
m) time.

• See CLRS 22.5.

Strongly Connected Components

0

7

9 10

1211

1

3

2

5

6 8

4

Directed Graphs

• Directed Graphs

• Representation

• Search

• Topological Sorting

• Directed Acyclic Graphs

• Strongly Connected Components

• Implicit Graphs

• Implicit graph. Undirected/directed graph with implicit representation.

• Implicit representation.

• Start vertex s + algorithm to generate neighbors of a vertex.

• Applications. Games, AI, etc.

Implicit Graphs
• Rubiks cube

• n+m = 43.252.003.274.489.856.000 ~ 43 trillions.

• What is the smallest number of moves needed to solve a cube from any starting

configuration?

Implicit Graphs

year lower bound upper bound
1981 18 52
1990 18 42
1992 18 39
1992 18 37
1995 18 29
1995 20 29
2005 20 28
2006 20 27
2007 20 26
2008 20 25
2008 20 23
2008 20 22
2010 20 20

Directed Graphs

• Directed Graphs

• Representation

• Search

• Topological Sorting

• Directed Acyclic Graphs

• Strongly Connected Components

• Implicit Graphs

