
Weekplan: Hashing and Dynamic Sets

Philip Bille Inge Li Gørtz

Reading

Introduction to Algorithms, Cormen, Rivest, Leisersons and Stein (CLRS): Chapter 11 excluding 11.5.

Exercises

1 Run by Hand and Properties

1.1 [w] Insert the key sequence K = 7, 18, 2, 3, 14, 25, 1, 11, 12, 1332 into a hash table of size 11 using chained hashing
with hash function h(k) = k mod 11.

1.2 [w] Insert the key sequence K = 2, 32, 43, 16, 77, 51, 1, 17, 42, 111 into a hash table of size 17 using linear probing
with hash function h(k) = k mod 17.

1.3 Delete 111 and 51 from the hash table produced in exercise 1.2.

1.4 Assume we do deletion in linear probing without reinserting the elements in the chunk to the right of the deleted
element. Give a shortest possible sequence of dictionary operations that show this does not work correctly.

1.5 Let K be a sequence of keys stored in a hash table A using chained hashing. Given A, can one efficiently find the
maximum element in K?

2 Divisors in the Division Method Consider the hash function h(k) = k mod 10 and the key sequence K = 0, 5, 20, 40,
65, 15, 90, 95, 80, 55.

2.1 Why is the choice of hash function problematic in relation to K?

2.2 Explain why we use prime numbers in the division method.

3 Lazy Deletion in Linear Probing Consider the following ”lazy” strategy for deletion in linear probing. When an
element is deleted on position p we mark that the element on position p has been deleted.

3.1 Explain how SEARCH and INSERT should be modified to work when using this strategy.

3.2 Explain benefits and drawbacks using this method compared to ”eager” deletion.

4 Game Server Statistics For your new extremely successful online game you would like to keep track of whether
the active users come from a small group of very active players, or a large group of different players who only play
infrequently. Each player has a unique ID and from your game server you can access the sequence of player IDs from all
game sessions.

4.1 Give an algorithm that counts the number of unique players on the game server.

4.2 Give an algorithm that finds the player who has played the most games.

1



5 Bit Vectors Computers are often referred to as w-bit computers. For instance, most modern computers are 64-
bit computers. This means that registers and memory cells stores w-bits each and the primitive data types, such as
integers, floating point numbers, and pointers, are represented in w-bits. Standard programming languages support bit
manipulation operations w-bits in constant time (see the manual for your preferred programming language), including
shifting and bitwise logical operators. We want to use these to efficiently implement arrays of bits, called bit vectors.
Suppose you are working on a w-bit computer. Solve the following exercises.

5.1 Show how to compactly represent a bit vector B of length w, such that the i’th bit can be accessed or flipped in
O(1) time.

5.2 Show how to compactly represent a bit vector B of length n (for large n≫ w) such that the i’th bit can be accessed
or flipped in O(1) time.

5.3 Show how a bit vector can be used to represent a dynamic set without satellite data using direct addressing.

6 [∗] Sorting in Small Universes Let A[0..n− 1] be an array of integers from {0, . . . , n− 1}. Give an algorithm that
sorts A in O(n) time. Hint: start by inserting the numbers into a chained hash table with the identity function as hash
function.

7 [∗∗] Uninitialized Arrays We want to implement a huge array A such that we can efficiently access and change an
entry in A. In the beginning the entries of A might contain ”garbage” and because of the size we do not want to spend
time on initializing all the entries. Give a solution that uses linear space in the size of the array, allows access and updates
in O(1) time per entry, and only uses O(1) time for initialization.

2


