
Philip Bille

Shortest Paths

• Shortest Paths

• Properties of Shortest Paths

• Dijkstra's Algorithm

• Shortest Paths on DAGs

Shortest Paths

• Shortest Paths

• Properties of Shortest Paths

• Dijkstra's Algorithm

• Shortest Paths on DAGs

• Shortest paths. Given a directed, weighted graph G and vertex s, find shortest path
from s to all vertices in G.

Shortest Paths

0

7

1

3

2

5

6

4

5

8

9

4

5

7

12

15

6
1

4

20

13

11

3

9

s

5 17

0

8

25

13

14

9

• Shortest paths. Given a directed, weighted graph G and vertex s, find shortest path
from s to all vertices in G.

• Shortest path tree. Represent shortest paths in a tree from s.

Shortest Paths

5 17

0

7

1

3

2

5

6

4

5

8

9

4

5

7

12

15

6
1

4

20

13

11

3

9

s
0

8

25

13

14

9

• Routing, scheduling, pipelining, ...

Applications

Shortest Paths

• Shortest Paths

• Properties of Shortest Paths

• Dijkstra's Algorithm

• Shortest Paths on DAGs

• Assume for simplicity:

• All vertices are reachable from s.

• ⟹ a (shortest) path to each vertex always exists.

Properties of Shortest Paths

• Subpath property. Any subpath of a shortest path is a shortest path.

• Proof.

• Consider shortest path from s to t consisting of p1, p2 and p3.

• Assume q2 is shorter than p2.

• ⟹ Then p1, q2 and p3 is shorter than p.

Properties of Shortest Paths

u v t

p2

q2

p3s p1

Shortest Paths

• Shortest Paths

• Properties of Shortest Paths

• Dijkstra's Algorithm

• Shortest Paths on DAGs

• Goal. Given a directed, weighted graph with non-negative weights and a vertex s,
compute shortest paths from s to all vertices.

• Dijkstra's algorithm.

• Maintains distance estimate v.d for each vertex v = length of shortest known

path from s to v.

• Updates distance estimates by relaxing edges.

Dijkstra's Algorithm

RELAX(u,v)
if (v.d > u.d + w(u,v))

v.d = u.d + w(u,v)

5 9
2

5 7
2

5 6
2

5 6
2

• Initialize s.d = 0 and v.d = ∞ for all vertices v ∈ V\{s}.

• Grow tree T from s.

• In each step, add vertex with smallest distance estimate to T.

• Relax all outgoing edges of v.

Dijkstra's Algorithm

s

8

16

23

∞

7766

55

44
33

2211

00

5

8

9

4

5

7

12

15

6
1

4

20

13

11

3

9

s
0

∞

∞

∞

∞

∞

∞

∞

5

8

9

20

17
15

14
13

29

14

17

25
26

1

8

2

4

3

6

7

5

5

8

9

4

5

7

12

15

6
1

4

20

13

11

3

9

s
0

∞

∞

∞

∞

∞

∞

∞

5

8

9

0

1

20

17

3

15

14

6

13

29
5

14

4

17

25

2

7

26

• Initialize s.d = 0 and v.d = ∞ for all vertices v ∈ V\{s}.

• Grow tree T from s.

• In each step, add vertex with smallest distance estimate to T.

• Relax all outgoing edges of v.

• Exercise. Show execution of Dijkstra's algorithm from vertex 0.

Dijkstra's Algorithm

0
1 2

3
4

5

87
6

4

7

1 1

4

6 1

2

10

1

4

22

7

1

3

• Lemma. Dijkstra's algorithms computes shortest paths.

• Proof.

• Consider some step after growing tree T and assume distances in T are correct.

• Consider closest vertex u of s not in T.

• Shortest path from s to u ends with an edge e = (v,u).

• v is closer than u to s ⟹ v is in T. (u was closest not in T)

• ⟹ shortest path to u is in T except e.

• e is relaxed ⟹ distance estimate to v is correct shortest distance.

• Dijkstra adds e to T ⟹ T is shortest path tree after n-1 steps.

Dijkstra's Algorithm

us v

• Implementation. How do we implement Dijkstra's algorithm?

• Challenge. Find vertex with smallest distance estimate.

Dijkstra's Algorithm

s

8

16

23

∞

• Implementation. Maintain vertices outside T in priority queue.

• Key of vertex v = v.d.

• In each step:

• Find vertex u with smallest distance estimate = EXTRACT-MIN

• Relax edges that u point to with DECREASE-KEY.

Dijkstra's Algorithm

s

8

16

23

∞

• Time.

• n EXTRACT-MIN

• n INSERT

• < m DECREASE-KEY

• Total time with min-heap. O(n log n + n log n + m log n) = O(m log n)

Dijkstra's Algorithm
DIJKSTRA(G, s)

for all vertices v∈V
v.d = ∞
v.π = null
INSERT(P,v)

DECREASE-KEY(P,s,0)
while (P ≠ ∅)

u = EXTRACT-MIN(P)
for all v that u point to

RELAX(u,v)

RELAX(u,v)
if (v.d > u.d + w(u,v))

v.d = u.d + w(u,v)
DECREASE-KEY(P,v,v.d)
v.π = u

s

8

16

23

∞

• Priority queues and Dijkstra's algorithm. Complexity of Dijkstra's algorithm depend
on priority queue.

• n INSERT

• n EXTRACT-MIN

• < m DECREASE-KEY

• Greed. Dijkstra's algorithm is a greedy algorithm.

Dijkstra's Algorithm

Priority queue INSERT EXTRACT-MIN DECREASE-KEY Total

array O(1) O(n) O(1) O(n2)

binary heap O(log n) O(log n) O(log n) O(m log n)

Fibonacci heap O(1)† O(log n)† O(1)† O(m + n log n)

† = amortized

• Edsger Wybe Dijkstra (1930-2002)

• Dijkstra algorithm. "A note on two problems in connexion with graphs". Numerische

Mathematik 1, 1959.

• Contributions. Foundations for programming, distributed computation, program

verifications, etc.

• Quotes. “Object-oriented programming is an exceptionally bad idea which could

only have originated in California.”

• “The use of COBOL cripples the mind; its teaching should, therefore, be regarded as

a criminal offence.”

• “APL is a mistake, carried through to perfection. It is the language of the future for

the programming techniques of the past: it creates a new generation of coding
bums.”

Edsger W. Dijkstra

Shortest Paths

• Shortest Paths

• Properties of Shortest Paths

• Dijkstra's Algorithm

• Shortest Paths on DAGs

• Challenge. Is it computationally easier to find shortest paths on DAGs?

• DAG shortest path algoritme.

• Process vertices in topological order.

• For each vertex v, relax all edges from v.

• Also works for negative edge weights.

Shortest Paths on DAGs

0 1 6 4 3 2 5s
6 4 15 ∞

• Lemma. Algorithm computes shortest paths in DAGs.

• Proof.

• Consider some step after growing tree T and assume distances in T are correct.

• Consider next vertex u of s not in T.

• Any path to u consists vertices in T + edge e to u.

• Edge e is relaxed ⟹ distance to u is shortest.

Shortest Paths on DAGs

0 1 6 4 3 2 5s
6 4 15 ∞

• Implementation.

• Sort vertices in topological order.

• Relax outgoing edges from each vertex.

• Total time. O(m + n).

Shortest Paths on DAGs

0 1 6 4 3 2 5s
6 4 15 ∞

• Vertices

• Single source.

• Single source, single target.

• All-pairs.

• Edge weights.

• Non-negative.

• Arbitrary.

• Euclidian distances.

• Cycles.

• No cycles

• No negative cycles.

Shortest Paths Variants

Shortest Paths

• Shortest Paths

• Properties of Shortest Paths

• Dijkstra's Algorithm

• Shortest Paths on DAGs

