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• Shortest paths.  Given a directed, weighted graph G and vertex s, find shortest path 
from s to all vertices in G. 
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• Shortest paths.  Given a directed, weighted graph G and vertex s, find shortest path 
from s to all vertices in G. 


• Shortest path tree. Represent shortest paths in a tree from s. 
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• Routing, scheduling, pipelining, ...

Applications
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• Assume for simplicity:

• All vertices are reachable from s.


• ⟹ a (shortest) path to each vertex always exists. 

Properties of Shortest Paths



• Subpath property. Any subpath of a shortest path is a shortest path.

• Proof. 


• Consider shortest path from s to t consisting of p1, p2 and p3. 


• Assume q2 is shorter than p2. 

• ⟹ Then  p1, q2 and p3 is shorter than p.

Properties of Shortest Paths

u v t

p2

q2

p3s p1



Shortest Paths

• Shortest Paths

• Properties of Shortest Paths

• Dijkstra's Algorithm

• Shortest Paths on DAGs



• Goal. Given a directed, weighted graph with non-negative weights and a vertex s, 
compute shortest paths from s to all vertices.


• Dijkstra's algorithm. 

• Maintains distance estimate v.d for each vertex v =  length of shortest known 

path from s to v. 

• Updates distance estimates by relaxing edges. 

Dijkstra's Algorithm

RELAX(u,v) 
if (v.d > u.d + w(u,v))

v.d = u.d + w(u,v)
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• Initialize s.d = 0 and v.d = ∞ for all vertices v ∈ V\{s}.

• Grow tree T from s.

• In each step, add vertex with smallest distance estimate to T.

• Relax all outgoing edges of v.

Dijkstra's Algorithm
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• Initialize s.d = 0 and v.d = ∞ for all vertices v ∈ V\{s}.

• Grow tree T from s.

• In each step, add vertex with smallest distance estimate to T.

• Relax all outgoing edges of v.

• Exercise. Show execution of Dijkstra's algorithm from vertex 0.

Dijkstra's Algorithm
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• Lemma. Dijkstra's algorithms computes shortest paths. 

• Proof. 


• Consider some step after growing tree T and assume distances in T are correct.

• Consider closest vertex u of s not in T.

• Shortest path from s to u ends with an edge e = (v,u).

• v is closer than u to s  ⟹ v is in T. (u was closest not in T)


• ⟹ shortest path to u is in T except e.


• e is relaxed ⟹ distance estimate to v is correct shortest distance. 


• Dijkstra adds e to T ⟹ T is shortest path tree after n-1 steps.

Dijkstra's Algorithm

us v



• Implementation. How do we implement Dijkstra's algorithm?

• Challenge. Find vertex with smallest distance estimate.

Dijkstra's Algorithm
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• Implementation. Maintain vertices outside T in priority queue. 

• Key of vertex v = v.d.

• In each step:


• Find vertex u with smallest distance estimate = EXTRACT-MIN 

• Relax edges that u point to with DECREASE-KEY.

Dijkstra's Algorithm
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• Time. 

• n EXTRACT-MIN 

• n INSERT 

• < m DECREASE-KEY 


• Total time with min-heap. O(n log n + n log n + m log n) = O(m log n) 

Dijkstra's Algorithm
DIJKSTRA(G, s) 

for all vertices v∈V
v.d = ∞
v.π = null
INSERT(P,v)

DECREASE-KEY(P,s,0)
while (P ≠ ∅)

u = EXTRACT-MIN(P)
for all v that u point to

RELAX(u,v) 

RELAX(u,v) 
if (v.d > u.d + w(u,v))

v.d = u.d + w(u,v)
DECREASE-KEY(P,v,v.d)
v.π = u 
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• Priority queues and Dijkstra's algorithm. Complexity of Dijkstra's algorithm depend 
on priority queue.

• n INSERT

• n EXTRACT-MIN

• < m DECREASE-KEY


• Greed. Dijkstra's algorithm is a greedy algorithm. 

Dijkstra's Algorithm

Priority queue INSERT EXTRACT-MIN DECREASE-KEY Total

array O(1) O(n) O(1) O(n2)

binary heap O(log n) O(log n) O(log n) O(m log n)

Fibonacci heap O(1)† O(log n)† O(1)† O(m + n log n)

† = amortized



• Edsger Wybe Dijkstra (1930-2002) 

• Dijkstra algorithm. "A note on two problems in connexion with graphs". Numerische 

Mathematik 1, 1959.

• Contributions. Foundations for programming, distributed computation, program 

verifications, etc. 

• Quotes. “Object-oriented programming is an exceptionally bad idea which could 

only have originated in California.”

• “The use of COBOL cripples the mind; its teaching should, therefore, be regarded as 

a criminal offence.”

• “APL is a mistake, carried through to perfection. It is the language of the future for 

the programming techniques of the past: it creates a new generation of coding 
bums.”

Edsger W. Dijkstra
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• Challenge. Is it computationally easier to find shortest paths on DAGs?

• DAG shortest path algoritme.


• Process vertices in topological order.

• For each vertex v, relax all edges from v.


• Also works for negative edge weights.

Shortest Paths on DAGs
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• Lemma. Algorithm computes shortest paths in DAGs.


• Proof. 

• Consider some step after growing tree T and assume distances in T are correct.

• Consider next vertex u of s not in T.

• Any path to u consists vertices in T + edge e to u.

• Edge e is relaxed ⟹ distance to u is shortest.

Shortest Paths on DAGs
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• Implementation. 

• Sort vertices in topological order.

• Relax outgoing edges from each vertex.


• Total time. O(m + n).

Shortest Paths on DAGs
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• Vertices

• Single source.

• Single source, single target.

• All-pairs.


• Edge weights.

• Non-negative.

• Arbitrary.

• Euclidian distances.


• Cycles.

• No cycles

• No negative cycles.

Shortest Paths Variants
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