Competitive Programmer’s Handbook
(modified for 02105 at DTU)

Antti Laaksonen?!

Draft February 28, 2022

IThis contains parts of chapter 11, 12, 13, and 15 from "Competitive Programmer’s
Handbook". The chapters have been adapted to use in the course 02105 at Technical
University of Denmark by Inge Li Ggrtz and Christian Fuglsang Mikkelsen. The C++
code has been changed to Java, and minor changes have been made. The license of the
book is Creative Commons BY-NC-SA 4.0. To get the full version of the original book go
here: https://cses.fi/book/index.php

i1

Chapter 11

Basics of graphs

Many programming problems can be solved by modeling the problem as a graph
problem and using an appropriate graph algorithm. A typical example of a graph
is a network of roads and cities in a country. Sometimes, though, the graph is
hidden in the problem and it may be difficult to detect it.

This part of the book discusses graph algorithms, especially focusing on topics
that are important in competitive programming. In this chapter, we go through
concepts related to graphs, and study different ways to represent graphs in
algorithms.

11.1 Graph terminology

A graph consists of nodes and edges. In this book, the variable n denotes the
number of nodes in a graph, and the variable m denotes the number of edges.
The nodes are numbered using integers 1,2,...,n.

For example, the following graph consists of 5 nodes and 7 edges:

A path leads from node a to node b through edges of the graph. The length
of a path is the number of edges in it. For example, the above graph contains a
path 1 — 3 — 4 — 5 of length 3 from node 1 to node 5:

A path is a cycle if the first and last node is the same. For example, the above
graph contains a cycle 1 - 3 — 4 — 1. A path is simple if each node appears at
most once in the path.

Connectivity

A graph is connected if there is a path between any two nodes. For example,
the following graph is connected:

The following graph is not connected, because it is not possible to get from

node 4 to any other node:

The connected parts of a graph are called its components. For example, the
following graph contains three components: {1, 2, 3}, {4, 5, 6, 7} and {8}.

A tree is a connected graph that consists of n nodes and n — 1 edges. There is
a unique path between any two nodes of a tree. For example, the following graph

is a tree:

A graph is directed if the edges can be traversed in one direction only. For
example, the following graph is directed:

NN

The above graph contains a path 3 — 1 — 2 — 5 from node 3 to node 5, but
there is no path from node 5 to node 3.

Edge directions

Edge weights

In a weighted graph, each edge is assigned a weight. The weights are often
interpreted as edge lengths. For example, the following graph is weighted:

5
) (207
! 5)
(3) 3
7
The length of a path in a weighted graph is the sum of the edge weights on
the path. For example, in the above graph, the length of the path 1 — 2 — 51is 12,

and the length of the path 1 — 3 — 4 — 5 is 11. The latter path is the shortest
path from node 1 to node 5.

Neighbors and degrees

Two nodes are neighbors or adjacent if there is an edge between them. The
degree of a node is the number of its neighbors. For example, in the following
graph, the neighbors of node 2 are 1, 4 and 5, so its degree is 3.

The sum of degrees in a graph is always 2m, where m is the number of edges,
because each edge increases the degree of exactly two nodes by one. For this
reason, the sum of degrees is always even.

A graph is regular if the degree of every node is a constant d. A graph is
complete if the degree of every node is n — 1, i.e., the graph contains all possible
edges between the nodes.

In a directed graph, the indegree of a node is the number of edges that end

at the node, and the outdegree of a node is the number of edges that start at
the node. For example, in the following graph, the indegree of node 2 is 2, and

the outdegree of node 2 is 1.

(H——®

Colorings

In a coloring of a graph, each node is assigned a color so that no adjacent nodes
have the same color.

A graph is bipartite if it is possible to color it using two colors. It turns out
that a graph is bipartite exactly when it does not contain a cycle with an odd
number of edges. For example, the graph

is bipartite, because it can be colored as follows:

However, the graph

is not bipartite, because it is not possible to color the following cycle of three
nodes using two colors:

Simplicity

A graph is simple if no edge starts and ends at the same node, and there are no
multiple edges between two nodes. Often we assume that graphs are simple. For
example, the following graph is not simple:

11.2 Graph representation

There are several ways to represent graphs in algorithms. The choice of a data
structure depends on the size of the graph and the way the algorithm processes
it. Next we will go through three common representations.

Adjacency list representation

In the adjacency list representation, each node x in the graph is assigned an
adjacency list that consists of nodes to which there is an edge from x. Adjacency
lists are the most popular way to represent graphs, and most algorithms can be
efficiently implemented using them.

A convenient way to store the adjacency lists is to declare an array of array-
lists as followdT}

ArraylList<Integer>[] adj = new ArrayList[N];

Where-after we initialize each of the lists in the array as follows:

for (int i = 0; i < N; i++)
adjli] = new ArrayList<>();

The constant N is chosen so that all adjacency lists can be stored. Typically,
it is enough to have N = n + 1. For example, the graph

can be stored as follows:

adj[1].add(2);
adj[2].add(3);
adj[2].add(4);
adj[3].add(4);
adj[4].add(1);

If the graph is undirected, it can be stored in a similar way, but each edge is
added in both directions.
For a weighted graph, the structure can be extended as follows:

ArrayList<Pair>[] adj = new ArrayList[N];

You will likely get a compiler warning about type safety using the shown declaration. This is
suppressed by writing @SuppressWarnings("unchecked”) on the line above.

Where Pair is a class used to maintain two values of our choosing in a single
container. The class can be declared above the main method as follows:

public static class Pair {

public int first;
public int second;

public Pair(int first, int second) {

this.first = first;
this.second = second;

}

In this case, the adjacency list of node a contains the pair (b,w) always when
there is an edge from node a to node b with weight w. For example, the graph

can be stored as follows:

adj[1].add(new Pair(2, 5));
adjl2].add(new Pair(3, 7));
adj[2].add(new Pair(4, 6));
adj[3].add(new Pair(4, 5));
adj[4].add(new Pair(1, 2));

The benefit of using adjacency lists is that we can efficiently find the nodes
to which we can move from a given node through an edge. For example, the
following loop goes through all nodes to which we can move from node s:

for (int u : adj[s]) {
// process node u

Adjacency matrix representation

An adjacency matrix is a two-dimensional array that indicates which edges
the graph contains. We can efficiently check from an adjacency matrix if there is
an edge between two nodes. The matrix can be stored as an array

int[1[] adj = new int[NJ[NI;

where each value adjlal[b] indicates whether the graph contains an edge from
node a to node b. If the edge is included in the graph, then adjla][b6] =1, and
otherwise adjlal[b] = 0. For example, the graph

can be represented as follows:

[O N

= oo | O |
S| O | O | =N
S| O | = | O | W
OlRr|IR|O|KN

If the graph is weighted, the adjacency matrix representation can be extended
so that the matrix contains the weight of the edge if the edge exists. Using this

representation, the graph
6 5

corresponds to the following matrix:

[\ el el e
S| OO || N
(= - =R
S| O || O |

1
2
3
4

The drawback of the adjacency matrix representation is that the matrix
contains n? elements, and usually most of them are zero. For this reason, the
representation cannot be used if the graph is large.

Edge list representation

An edge list contains all edges of a graph in some order. This is a convenient
way to represent a graph if the algorithm processes all edges of the graph and it
is not needed to find edges that start at a given node.

The edge list can be stored in an array-list

ArraylList<Pair> edges = new ArraylList<>();

where each pair (a,b) denotes that there is an edge from node a to node b. Thus,
the graph

can be represented as follows:

edges.add(new Pair(1, 2));
edges.add(new Pair(2, 3));
edges.add(new Pair(2, 4));
edges.add(new Pair(3, 4));
edges.add(new Pair(4, 1));

If the graph is weighted, the structure can be extended as follows:

ArrayList<Tuple> edges = new ArraylList<>();

Where Tuple maintains three values. It is declared similarly to Pair, but has an
extra value named third in the constructor and as a member.

Each element in the above edge list is of the form (a,b,w), which means that
there is an edge from node a to node b with weight w. For example, the graph

can be represented as follows:

edges.add(new Tuple(l, 2, 5));
edges.add(new Tuple(2, 3, 7));
edges.add(new Tuple(2, 4, 6));
edges.add(new Tuple(3, 4, 5));
edges.add(new Tuple(4, 1, 2));

Chapter 12

Graph traversal

This chapter discusses two fundamental graph algorithms: depth-first search and
breadth-first search. Both algorithms are given a starting node in the graph, and
they visit all nodes that can be reached from the starting node. The difference in
the algorithms is the order in which they visit the nodes.

12.1 Depth-first search

Depth-first search (DFS) is a straightforward graph traversal technique. The
algorithm begins at a starting node, and proceeds to all other nodes that are
reachable from the starting node using the edges of the graph.

Depth-first search always follows a single path in the graph as long as it
finds new nodes. After this, it returns to previous nodes and begins to explore
other parts of the graph. The algorithm keeps track of visited nodes, so that it
processes each node only once.

Example

Let us consider how depth-first search processes the following graph:

We may begin the search at any node of the graph; now we will begin the search
at node 1.
The search first proceeds to node 2:

After this, nodes 3 and 5 will be visited:

The neighbors of node 5 are 2 and 3, but the search has already visited both of
them, so it is time to return to the previous nodes. Also the neighbors of nodes 3
and 2 have been visited, so we next move from node 1 to node 4:

After this, the search terminates because it has visited all nodes.

The time complexity of depth-first search is O(n + m) where n is the number
of nodes and m is the number of edges, because the algorithm processes each
node and edge once.

Implementation

Depth-first search can be conveniently implemented using recursion. The fol-
lowing function dfs begins a depth-first search at a given node. The function
assumes that the graph is stored as adjacency lists in an array

ArrayList<Integer>[] adj = new ArraylList[N];

and also maintains an array

boolean[] visited = new boolean[N];

that keeps track of the visited nodes. Initially, each array value is false, and
when the search arrives at node s, the value of visited[s] becomes true. The
function can be implemented as follows:

public static void dfs(ArrayList<Integer>[] adj, boolean[] visited,
— int s) {
if (visited[s]) return;
visited[s] = true;
// process node s
for (int u : adj[s]) {
dfs(adj, visited, u);

10

12.2 Breadth-first search

Breadth-first search (BFS) visits the nodes in increasing order of their distance
from the starting node. Thus, we can calculate the distance from the starting
node to all other nodes using breadth-first search. However, breadth-first search
is more difficult to implement than depth-first search.

Breadth-first search goes through the nodes one level after another. First the
search explores the nodes whose distance from the starting node is 1, then the
nodes whose distance is 2, and so on. This process continues until all nodes have
been visited.

Example

Let us consider how breadth-first search processes the following graph:

1 (2) 3

Suppose that the search begins at node 1. First, we process all nodes that can be
reached from node 1 using a single edge:

After this, we proceed to nodes 3 and 5:

1 (2)—3
Finally, we visit node 6:
1 (2) 3

11

Now we have calculated the distances from the starting node to all nodes of the
graph. The distances are as follows:

node distance
0

ST W IN
W N = N =

Like in depth-first search, the time complexity of breadth-first search is
O(n + m), where n is the number of nodes and m is the number of edges.

Implementation

Breadth-first search is more difficult to implement than depth-first search, be-
cause the algorithm visits nodes in different parts of the graph. A typical imple-
mentation is based on a queue that contains nodes. At each step, the next node
in the queue will be processed.

The following code assumes that the graph is stored as adjacency lists and
maintains the following data structures:

ArrayDeque<Integer> q = new ArrayDeque<>();
boolean[] visited = new boolean[N];
int[] distance = new int[N];

The queue gq contains nodes to be processed in increasing order of their
distance. New nodes are always added to the end of the queue, and the node at
the beginning of the queue is the next node to be processed. The array visited
indicates which nodes the search has already visited, and the array distance will
contain the distances from the starting node to all nodes of the graph.

The search can be implemented as follows, starting at node x:

visited[x] = true;
distance[x] = 0;
g.add(x);
while (!q.isEmpty()) {
int s = q.poll();
// process node s
for (int u : adjl[s]) {
if (visited[u]) continue;
visited[u] = true;
distance[u] = distance[s] + 1;
g.add(u);

12

12.3 Applications

Using the graph traversal algorithms, we can check many properties of graphs.
Usually, both depth-first search and breadth-first search may be used, but in
practice, depth-first search is a better choice, because it is easier to implement.
In the following applications we will assume that the graph is undirected.

Connectivity check

A graph is connected if there is a path between any two nodes of the graph. Thus,
we can check if a graph is connected by starting at an arbitrary node and finding
out if we can reach all other nodes.

For example, in the graph

>

a depth-first search from node 1 visits the following nodes:

> |

Since the search did not visit all the nodes, we can conclude that the graph
is not connected. In a similar way, we can also find all connected components of
a graph by iterating through the nodes and always starting a new depth-first
search if the current node does not belong to any component yet.

Finding cycles

A graph contains a cycle if during a graph traversal, we find a node whose
neighbor (other than the previous node in the current path) has already been
visited. For example, the graph

contains two cycles and we can find one of them as follows:

13

After moving from node 2 to node 5 we notice that the neighbor 3 of node 5 has
already been visited. Thus, the graph contains a cycle that goes through node 3,
for example, 3 -2 — 5 — 3.

Another way to find out whether a graph contains a cycle is to simply calculate
the number of nodes and edges in every component. If a component contains ¢
nodes and no cycle, it must contain exactly ¢ — 1 edges (so it has to be a tree). If
there are c or more edges, the component surely contains a cycle.

Bipartiteness check

A graph is bipartite if its nodes can be colored using two colors so that there are
no adjacent nodes with the same color. It is surprisingly easy to check if a graph
is bipartite using graph traversal algorithms.

The idea is to color the starting node blue, all its neighbors red, all their
neighbors blue, and so on. If at some point of the search we notice that two
adjacent nodes have the same color, this means that the graph is not bipartite.
Otherwise the graph is bipartite and one coloring has been found.

For example, the graph

is not bipartite, because a search from node 1 proceeds as follows:

We notice that the color of both nodes 2 and 5 is red, while they are adjacent
nodes in the graph. Thus, the graph is not bipartite.

This algorithm always works, because when there are only two colors avail-
able, the color of the starting node in a component determines the colors of all
other nodes in the component. It does not make any difference whether the
starting node is red or blue.

Note that in the general case, it is difficult to find out if the nodes in a graph
can be colored using % colors so that no adjacent nodes have the same color. Even
when % = 3, no efficient algorithm is known but the problem is NP-hard.

14

Chapter 13

Shortest paths

Finding a shortest path between two nodes of a graph is an important problem
that has many practical applications. For example, a natural problem related to
a road network is to calculate the shortest possible length of a route between two
cities, given the lengths of the roads.

In an unweighted graph, the length of a path equals the number of its edges,
and we can simply use breadth-first search to find a shortest path. However, in
this chapter we focus on weighted graphs where more sophisticated algorithms
are needed for finding shortest paths.

13.1 Bellman-Ford algorithm

The Bellman-Ford algorithmE] finds shortest paths from a starting node to all
nodes of the graph. The algorithm can process all kinds of graphs, provided that
the graph does not contain a cycle with negative length. If the graph contains a
negative cycle, the algorithm can detect this.

The algorithm keeps track of distances from the starting node to all nodes
of the graph. Initially, the distance to the starting node is 0 and the distance to
all other nodes in infinite. The algorithm reduces the distances by finding edges
that shorten the paths until it is not possible to reduce any distance.

Example

Let us consider how the Bellman—Ford algorithm works in the following graph:
0 o0
(1) O
3 6)
(@]
(3) (4] 2
(o @]

P 1
IThe algorithm is named after R. E. Bellman and L. R. Ford who published it independently
in 1958 and 1956, respectively [1], [5].

5

15

Each node of the graph is assigned a distance. Initially, the distance to the
starting node is 0, and the distance to all other nodes is infinite.

The algorithm searches for edges that reduce distances. First, all edges from
node 1 reduce distances:

e}
(%)
(o3}

3 1 7

After this, edges 2 — 5 and 3 — 4 reduce distances:

After this, no edge can reduce any distance. This means that the distances
are final, and we have successfully calculated the shortest distances from the
starting node to all nodes of the graph.

For example, the shortest distance 3 from node 1 to node 5 corresponds to the
following path:

16

Implementation

The following implementation of the Bellman—Ford algorithm determines the
shortest distances from a node x to all nodes of the graph. The code assumes
that the graph is stored as an edge list edges that consists of tuples of the form
(a,b,w), meaning that there is an edge from node a to node b with weight w.

The algorithm consists of n — 1 rounds, and on each round the algorithm goes
through all edges of the graph and tries to reduce the distances. The algorithm
constructs an array distance that will contain the distances from x to all nodes
of the graph. The constant INF denotes an infinite distance.

int[] distance = new int[N];
for (int i = 1; i <= n; i++)
distance[i] = INF;
distance[x] = 0;
for (int i =1; i <=n-1; i++) {
for (Tuple e : edges) {
int a = e.first, b = e.second, w = e.third;
distance[b] = Math.min(distance[b], distance[a] + w);

}

The time complexity of the algorithm is O(nm), because the algorithm consists
of n —1 rounds and iterates through all m edges during a round. If there are no
negative cycles in the graph, all distances are final after n — 1 rounds, because
each shortest path can contain at most n — 1 edges.

In practice, the final distances can usually be found faster than in n—1 rounds.
Thus, a possible way to make the algorithm more efficient is to stop the algorithm
if no distance can be reduced during a round.

Negative cycles

The Bellman—Ford algorithm can also be used to check if the graph contains a
cycle with negative length. For example, the graph

contains a negative cycle 2 — 3 — 4 — 2 with length —4.

If the graph contains a negative cycle, we can shorten infinitely many times
any path that contains the cycle by repeating the cycle again and again. Thus,
the concept of a shortest path is not meaningful in this situation.

A negative cycle can be detected using the Bellman—Ford algorithm by running
the algorithm for n rounds. If the last round reduces any distance, the graph

17

contains a negative cycle. Note that this algorithm can be used to search for a
negative cycle in the whole graph regardless of the starting node.

SPFA algorithm

The SPFA algorithm ("Shortest Path Faster Algorithm”) [3] is a variant of the
Bellman—Ford algorithm, that is often more efficient than the original algorithm.
The SPFA algorithm does not go through all the edges on each round, but instead,
it chooses the edges to be examined in a more intelligent way.

The algorithm maintains a queue of nodes that might be used for reducing
the distances. First, the algorithm adds the starting node x to the queue. Then,
the algorithm always processes the first node in the queue, and when an edge
a — b reduces a distance, node b is added to the queue.

The efficiency of the SPFA algorithm depends on the structure of the graph:
the algorithm is often efficient, but its worst case time complexity is still O(nm)
and it is possible to create inputs that make the algorithm as slow as the original
Bellman—Ford algorithm.

13.2 Dijkstra’s algorithm

Dijkstra’s algorithmﬁ finds shortest paths from the starting node to all nodes of
the graph, like the Bellman—Ford algorithm. The benefit of Dijsktra’s algorithm
is that it is more efficient and can be used for processing large graphs. However,
the algorithm requires that there are no negative weight edges in the graph.

Like the Bellman—Ford algorithm, Dijkstra’s algorithm maintains distances
to the nodes and reduces them during the search. Dijkstra’s algorithm is efficient,
because it only processes each edge in the graph once, using the fact that there
are no negative edges.

Example

Let us consider how Dijkstra’s algorithm works in the following graph when the
starting node is node 1:

o
3

(5)
(a7
0

Like in the Bellman—Ford algorithm, initially the distance to the starting node is
0 and the distance to all other nodes is infinite.

(0 ——(e)8

2E. W. Dijkstra published the algorithm in 1959 [Z]; however, his original paper does not
mention how to implement the algorithm efficiently.

18

At each step, Dijkstra’s algorithm selects a node that has not been processed
yet and whose distance is as small as possible. The first such node is node 1 with
distance 0.

When a node is selected, the algorithm goes through all edges that start at
the node and reduces the distances using them:

In this case, the edges from node 1 reduced the distances of nodes 2, 4 and 5,
whose distances are now 5, 9 and 1.

The next node to be processed is node 5 with distance 1. This reduces the
distance to node 4 from 9 to 3:

A remarkable property in Dijkstra’s algorithm is that whenever a node is
selected, its distance is final. For example, at this point of the algorithm, the
distances 0, 1 and 3 are the final distances to nodes 1, 5 and 4.

After this, the algorithm processes the two remaining nodes, and the final
distances are as follows:

19

Negative edges

The efficiency of Dijkstra’s algorithm is based on the fact that the graph does
not contain negative edges. If there is a negative edge, the algorithm may give
incorrect results. As an example, consider the following graph:

The shortest path from node 1 to node 4 is 1 — 3 — 4 and its length is 1. However,
Dijkstra’s algorithm finds the path 1 — 2 — 4 by following the minimum weight
edges. The algorithm does not take into account that on the other path, the
weight —5 compensates the previous large weight 6.

Implementation

The following implementation of Dijkstra’s algorithm calculates the minimum
distances from a node x to other nodes of the graph. The graph is stored as
adjacency lists so that adj[a] contains a pair (b,w) always when there is an edge
from node a to node b with weight w.

An efficient implementation of Dijkstra’s algorithm requires that it is possible
to efficiently find the minimum distance node that has not been processed. An
appropriate data structure for this is a priority queue that contains the nodes
ordered by their distances. Using a priority queue, the next node to be processed
can be retrieved in logarithmic time. We declare a priority queue of pairs as
follows:

PriorityQueue<Pair> q = new PriorityQueue<>((a, b) -> {
return Integer.compare(a.first, b.first);

s

The ordering of the elements is determined by the comparator declared in the
constructor. In the above, the elements are ordered according to the ascending
order of the first element in the pair.

In the following code, the priority queue q contains pairs of the form (d,x),
meaning that the current distance to node x is d. The array distance contains
the distance to each node, and the array processed indicates whether a node has
been processed. Initially the distance is 0 to x and oo to all other nodes.

20

int[] distance = new int[N];
boolean[] processed = new boolean[N];
for (int i = 1; i <= n; i++)
distance[i] = INF;
distance[x] = 0;
g.add(new Pair(@, x));
while (!q.isEmpty()) {
int a = q.poll().second;
if (processed[a]) continue;
processed[a] = true;
for (Pair u : adj[al) {
int b = u.first, w = u.second;
if (distancel[a] + w < distance[b]) {
distance[b] = distancel[a] + w;
g.add(new Pair(distancel[b], b));

Note that there may be several instances of the same node in the priority
queue; however, only the instance with the minimum distance will be processed.

The time complexity of the above implementation is O(n + mlogm), because
the algorithm goes through all nodes of the graph and adds for each edge at most
one distance to the priority queue.

13.3 Floyd-Warshall algorithm

The Floyd-Warshall algorithmE] provides an alternative way to approach the
problem of finding shortest paths. Unlike the other algorithms of this chapter, it
finds all shortest paths between the nodes in a single run.

The algorithm maintains a two-dimensional array that contains distances
between the nodes. First, distances are calculated only using direct edges between
the nodes, and after this, the algorithm reduces distances by using intermediate
nodes in paths.

Example

Let us consider how the Floyd—Warshall algorithm works in the following graph:

3The algorithm is named after R. W. Floyd and S. Warshall who published it independently in
1962 [4, [10].

21

(@) OF
2 (5)
© Of

Initially, the distance from each node to itself is 0, and the distance between
nodes a and b is x if there is an edge between nodes a and b with weight x. All
other distances are infinite.

In this graph, the initial array is as follows:

1 2 3 4 5
11 0 5 oo 9 1
215 0 2 oo o0
3l 2 0 7 o©
4/ 9 oo 7 0 2
5/ 1 oo o 2 0

The algorithm consists of consecutive rounds. On each round, the algorithm
selects a new node that can act as an intermediate node in paths from now on,
and distances are reduced using this node.

On the first round, node 1 is the new intermediate node. There is a new path
between nodes 2 and 4 with length 14, because node 1 connects them. There is
also a new path between nodes 2 and 5 with length 6.

1 2 3 4 5
110 5 oo 9 1
2,5 0 2 14 6
3loo 2 0 7 o0
419 14 7 0 2
5/ 1 6 oo 2 0

On the second round, node 2 is the new intermediate node. This creates new
paths between nodes 1 and 3 and between nodes 3 and 5:

1 2 3 4 5
110 5 7 91
2/5 0 2 14 6
3/7 2 0 7 8
419 14 7 0 2
5/1 6 8 2 0

On the third round, node 3 is the new intermediate round. There is a new
path between nodes 2 and 4:

22

= O g 0t O
SO N OYN
W 3O N g W
N O3 O
S DN 0 O | Ot

Ot W N

The algorithm continues like this, until all nodes have been appointed inter-
mediate nodes. After the algorithm has finished, the array contains the minimum
distances between any two nodes:

B~ W N
=W g ot o
S 00N YN

N O N 3w
N O© =3 00 Wik
S DN 0 O | Ot

5 8

For example, the array tells us that the shortest distance between nodes 2
and 4 is 8. This corresponds to the following path:

(@) OX.
2 5)
© O

7

Implementation

The advantage of the Floyd—Warshall algorithm that it is easy to implement. The
following code constructs a distance matrix where distance[a][b] is the shortest
distance between nodes a and b. First, the algorithm initializes distance using
the adjacency matrix adj of the graph:

int[J[] distance = new int[NJ[NJ;
for (int i = 1; i <= n; i++) {
for (int j =1; j <= n; j++) {
if (1==73){
distance[i][j] = 0;
} else if (adj[il[j] !'= @) {
distance[il[j] = adj[il[j];
} else {
distance[i][j] = INF;

23

After this, the shortest distances can be found as follows:

for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j =1; j <= n; j++) {
distance[i][j] = Math.min(distancel[i][j],
distance[i][k] + distance[kI[j1);

}

The time complexity of the algorithm is O(n?), because it contains three
nested loops that go through the nodes of the graph.

Since the implementation of the Floyd—Warshall algorithm is simple, the
algorithm can be a good choice even if it is only needed to find a single shortest
path in the graph. However, the algorithm can only be used when the graph is so
small that a cubic time complexity is fast enough.

24

Chapter 15

Spanning trees

A spanning tree of a graph consists of all nodes of the graph and some of the
edges of the graph so that there is a path between any two nodes. Like trees
in general, spanning trees are connected and acyclic. Usually there are several
ways to construct a spanning tree.

For example, consider the following graph:

The weight of a spanning tree is the sum of its edge weights. For example,
the weight of the above spanning treeis 3+5+9+3+2 =22,

A minimum spanning tree is a spanning tree whose weight is as small as
possible. The weight of a minimum spanning tree for the example graph is 20,
and such a tree can be constructed as follows:

25

In a similar way, a maximum spanning tree is a spanning tree whose
weight is as large as possible. The weight of a maximum spanning tree for the
example graph is 32:

Note that a graph may have several minimum and maximum spanning trees,
so the trees are not unique.

It turns out that several greedy methods can be used to construct minimum
and maximum spanning trees. In this chapter, we discuss two algorithms that
process the edges of the graph ordered by their weights. We focus on finding
minimum spanning trees, but the same algorithms can find maximum spanning
trees by processing the edges in reverse order.

15.1 Kruskal’s algorithm

In Kruskal’s algorithmﬂ the initial spanning tree only contains the nodes of
the graph and does not contain any edges. Then the algorithm goes through the
edges ordered by their weights, and always adds an edge to the tree if it does not
create a cycle.

The algorithm maintains the components of the tree. Initially, each node of
the graph belongs to a separate component. Always when an edge is added to the
tree, two components are joined. Finally, all nodes belong to the same component,
and a minimum spanning tree has been found.

Example

Let us consider how Kruskal’s algorithm processes the following graph:

The first step of the algorithm is to sort the edges in increasing order of their
weights. The result is the following list:

IThe algorithm was published in 1956 by J. B. Kruskal [7].

26

edge weight

© 30 OOt W Wi

After this, the algorithm goes through the list and adds each edge to the tree
if it joins two separate components.
Initially, each node is in its own component:

@ &
@ @
® ©

The first edge to be added to the tree is the edge 5—6 that creates a component
{5,6} by joining the components {5} and {6}:

OO
@ o

After this, the edges 1-2, 3-6 and 1-5 are added in a similar way:

After those steps, most components have been joined and there are two
components in the tree: {1,2,3,5,6} and {4}.

The next edge in the list is the edge 2—3, but it will not be included in the tree,
because nodes 2 and 3 are already in the same component. For the same reason,
the edge 2—5 will not be included in the tree.

27

Finally, the edge 4—6 will be included in the tree:

After this, the algorithm will not add any new edges, because the graph is
connected and there is a path between any two nodes. The resulting graph is a
minimum spanning tree with weight 2+3+3 +5+ 7 =20.

Why does this work?

It is a good question why Kruskal’s algorithm works. Why does the greedy
strategy guarantee that we will find a minimum spanning tree?

Let us see what happens if the minimum weight edge of the graph is not
included in the spanning tree. For example, suppose that a spanning tree for the
previous graph would not contain the minimum weight edge 5-6. We do not know
the exact structure of such a spanning tree, but in any case it has to contain some
edges. Assume that the tree would be as follows:

However, it is not possible that the above tree would be a minimum spanning
tree for the graph. The reason for this is that we can remove an edge from the
tree and replace it with the minimum weight edge 5—6. This produces a spanning
tree whose weight is smaller:

For this reason, it is always optimal to include the minimum weight edge in
the tree to produce a minimum spanning tree. Using a similar argument, we
can show that it is also optimal to add the next edge in weight order to the tree,
and so on. Hence, Kruskal’s algorithm works correctly and always produces a
minimum spanning tree.

28

Implementation

When implementing Kruskal’s algorithm, it is convenient to use the edge list
representation of the graph. The first phase of the algorithm sorts the edges in
the list in O(mlogm) time. After this, the second phase of the algorithm builds
the minimum spanning tree as follows:

for (...) {
if (!same(a,b)) unite(a,b);

}

The loop goes through the edges in the list and always processes an edge
a—b where a and b are two nodes. Two functions are needed: the function same
determines if @ and b are in the same component, and the function unite joins
the components that contain a and b.

The problem is how to efficiently implement the functions same and unite.
One possibility is to implement the function same as a graph traversal and check
if we can get from node a to node . However, the time complexity of such a
function would be O(n + m) and the resulting algorithm would be slow, because
the function same will be called for each edge in the graph.

We will solve the problem using a union-find structure that implements both
functions in O(logn) time. Thus, the time complexity of Kruskal’s algorithm will
be O(mlogn) after sorting the edge list.

15.2 Union-find structure

A union-find structure maintains a collection of sets. The sets are disjoint,
so no element belongs to more than one set. Two O(logn) time operations are
supported: the unite operation joins two sets, and the find operation finds the
representative of the set that contains a given element?}

Structure

In a union-find structure, one element in each set is the representative of the set,
and there is a chain from any other element of the set to the representative. For
example, assume that the sets are {1,4,7}, {5} and {2, 3,6, 8}:

(4) () ©
@O © ©

2The structure presented here was introduced in 1971 by J. D. Hopcroft and J. D. Ullman
[6]. Later, in 1975, R. E. Tarjan studied a more sophisticated variant of the structure [9] that is
discussed in many algorithm textbooks nowadays.

29

In this case the representatives of the sets are 4, 5 and 2. We can find the
representative of any element by following the chain that begins at the element.
For example, the element 2 is the representative for the element 6, because we
follow the chain 6 — 3 — 2. Two elements belong to the same set exactly when
their representatives are the same.

Two sets can be joined by connecting the representative of one set to the
representative of the other set. For example, the sets {1,4,7} and {2,3,6,8} can be
joined as follows:

The resulting set contains the elements {1,2,3,4,6,7,8}. From this on, the
element 2 is the representative for the entire set and the old representative 4
points to the element 2.

The efficiency of the union-find structure depends on how the sets are joined.
It turns out that we can follow a simple strategy: always connect the representa-
tive of the smaller set to the representative of the larger set (or if the sets are
of equal size, we can make an arbitrary choice). Using this strategy, the length
of any chain will be O(logn), so we can find the representative of any element
efficiently by following the corresponding chain.

Implementation

The union-find structure can be implemented using arrays. In the following
implementation, the array link contains for each element the next element in the
chain or the element itself if it is a representative, and the array size indicates
for each representative the size of the corresponding set.

Initially, each element belongs to a separate set:

int[] link = new int[n + 1];
int[] size = new int[n + 1];
for (int i = 1; i <= n; i++) link[i] = i;
for (int i = 1; i <= n; i++) sizel[i] = 1;

The function find returns the representative for an element x. The represen-
tative can be found by following the chain that begins at x. Note that we must
include 1link as a parameter to ensure that it is usable by the method.

public static int find(int[] link, int x) {
while (x != link[x]) x = link[x];
return x;

30

The function same checks whether elements a and b belong to the same set.
This can easily be done by using the function find:

public static boolean same(int[] link, int a, int b) {
return find(link, a) == find(link, b);
}

The function unite joins the sets that contain elements a and b (the elements
have to be in different sets). The function first finds the representatives of the
sets and then connects the smaller set to the larger set.

public static void unite(int[] link, int[] size, int a, int b) {
a = find(link, a);
b = find(link, b);
if (sizel[a] > size[b]) {
size[a] += size[b];

link[b] = a;

} else {
size[b] += sizel[al;
link[a] = b;

}

The time complexity of the function find is O(logn) assuming that the length
of each chain is O(logn). In this case, the functions same and unite also work in
O(logn) time. The function unite makes sure that the length of each chain is
O(logn) by connecting the smaller set to the larger set.

15.3 Prim’s algorithm

Prim’s algorithmﬂ is an alternative method for finding a minimum spanning
tree. The algorithm first adds an arbitrary node to the tree. After this, the
algorithm always chooses a minimum-weight edge that adds a new node to the
tree. Finally, all nodes have been added to the tree and a minimum spanning
tree has been found.

Prim’s algorithm resembles Dijkstra’s algorithm. The difference is that Dijk-
stra’s algorithm always selects an edge whose distance from the starting node is
minimum, but Prim’s algorithm simply selects the minimum weight edge that
adds a new node to the tree.

Example

Let us consider how Prim’s algorithm works in the following graph:

3The algorithm is named after R. C. Prim who published it in 1957 [8]. However, the same
algorithm was discovered already in 1930 by V. Jarnik.

31

Initially, there are no edges between the nodes:
An arbitrary node can be the starting node, so let us choose node 1. First, we add
node 2 that is connected by an edge of weight 3:

j @)
® ©

After this, there are two edges with weight 5, so we can add either node 3 or
node 5 to the tree. Let us add node 3 first:

5

O,

O
® ©

The process continues until all nodes have been included in the tree:

Implementation

Like Dijkstra’s algorithm, Prim’s algorithm can be efficiently implemented using a
priority queue. The priority queue should contain all nodes that can be connected
to the current component using a single edge, in increasing order of the weights
of the corresponding edges.

32

The time complexity of Prim’s algorithm is O(n + mlogm) that equals the time
complexity of Dijkstra’s algorithm. In practice, Prim’s and Kruskal’s algorithms
are both efficient, and the choice of the algorithm is a matter of taste. Still, most
competitive programmers use Kruskal’s algorithm.

33

34

Bibliography

[1] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87-90, 1958.

[2] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269-271, 1959.

[3] D. Fanding. A faster algorithm for shortest-path — SPFA. Journal of Southwest
Jiaotong University, 2, 1994.

[4] R. W. Floyd Algorithm 97: shortest path. Communications of the ACM,
5(6):345, 1962.

[5] L. R. Ford. Network flow theory. RAND Corporation, Santa Monica, California,
1956.

[6] J. E. Hopcroft and J. D. Ullman. A linear list merging algorithm. Technical
report, Cornell University, 1971.

[7] J. B. Kruskal. On the shortest spanning subtree of a graph and the travel-
ing salesman problem. Proceedings of the American Mathematical Society,
7(1):48-50, 1956.

[8] R. C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36(6):1389-1401, 1957.

[9] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal
of the ACM, 22(2):215-225, 1975.

[10] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11-12,
1962.

35

	Basics of graphs
	Graph terminology
	Graph representation

	Graph traversal
	Depth-first search
	Breadth-first search
	Applications

	Shortest paths
	Bellman–Ford algorithm
	Dijkstra's algorithm
	Floyd–Warshall algorithm

	Spanning trees
	Kruskal's algorithm
	Union-find structure
	Prim's algorithm

	Bibliography

