
Philip Bille

Introduction

• Algorithms and Data Structures

• Peaks

• Algorithm 1

• Algorithm 2

• Algorithm 3

Introduction

• Algorithms and Data Structures

• Peaks

• Algorithm 1

• Algorithm 2

• Algorithm 3

• Algorithmic problem. Precisely defined relation between input and output.

• Algorithm. Method to solve an algorithmic problem.

• Discrete and unambiguous steps.

• Mathematical abstraction of a program.

• Data structure. Method for organizing data to enable queries and updates.

Algorithms and Data Structures
• Find max. Given a array A[0..n-1], find an index i, such that A[i] is maximal.

• Input. Array A[0..n-1].

• Output. An index i such that A[i] ≥ A[j] for all indices j ≠ i.

• Algorithm.

• Process A from left-to-right and maintain value and index of maximal value seen

so far.

• Return index.

Example: Find max

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 7 15 17 11 2 3 6 8 7 5 9 5 23

• Natural language.

• Process A from left-to-right and maintain value and index of maximal value seen

so far.

• Return index.

• Program.

• Pseudocode.

Description of Algorithms

public static int findMax(int[] A) {
 int max = 0;
 for(i = 0; i < A.length; i++)
 if (A[i] > A[max]) max = i;
 return max;
}

FINDMAX(A, n)
max = 0

 for i = 0 to n-1
if (A[i] > A[max]) max = i

return max

Introduction

• Algorithms and Data Structures

• Peaks

• Algorithm 1

• Algorithm 2

• Algorithm 3

• Peak. A[i] is a peak if A[i] is as least as large as it's neighbors:

• A[i] is a peak if A[i-1] ≤ A[i] ≥ A[i+1] for i ∈ {1, .., n-2}

• A[0] is a peak if A[0] ≥ A[1].

• A[n-1] is a peak if A[n-2] ≤ A[n-1].

• Peak finding. Given a array A[0..n-1], find an index i such that A[i] is a peak.

• Input. A array A[0..n-1].

• Output. An index i such that A[i] is a peak.

Peaks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 7 15 17 11 2 3 6 8 7 5 9 5 23

Introduction

• Algorithms and Data Structures

• Peaks

• Algorithm 1

• Algorithm 2

• Algorithm 3

• Algorithm 1. For each entry check if it is a peak. Return the index of the first peak.

• Pseudocode.

• Challenge. How do we analyze the algorithm?

Algorithm 1

PEAK1(A, n)
if A[0] ≥ A[1] return 0

 for i = 1 to n-2
if A[i-1] ≤ A[i] ≥ A[i+1] return i

if A[n-2] ≤ A[n-1] return n-1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 7 15 17 11 2 3 6 8 7 5 9 5 23

• Running time/time complexity.

• T(n) = number of steps that the algorithm performs on input of size n.

• Steps.

• Read/write to memory (x := y, A[i], i = i + 1, ...)

• Arithmetic/boolean operations (+, -, *, /, %, &&, ||, &, |, ^, ~)

• Comparisons (<, >, =<, =>, =, ≠)

• Program flow (if-then-else, while, for, goto, function call, ..)

• Worst-case time complexity. Maximal running time over all inputs of size n.

Theoretical Analysis

• T(n) is a linear function of n: T(n) = an + b

• Asymptotic notation. T(n) = Θ(n)

• Experimental analysis.

• What is the experimental running time of algorithm 1?

• How does the experimental analysis compare to the theoretical analysis?

Theoretical Analysis

c1

(n-2)·c2

c3

PEAK1(A, n)
if A[0] ≥ A[1] return 0

 for i = 1 to n-2
if A[i-1] ≤ A[i] ≥ A[i+1] return i

if A[n-2] ≤ A[n-1] return n-1

T(n) = c1 + (n-2)·c2 + c3

• Running time. What is the running time T(n) for algorithm 1?

se
c.

 p
r 1

00
0

se
ar

ch
es

0

17,5

35

52,5

70

array size
100k 300k 500k 700k 900k 1.1m 1.3m 1.5m 1.7m 1.9m

Alg 1

• Algorithm 1 finds a peak in Θ(n) time.

• Theoretical and experimental analysis agrees.

• Challenge. Can we do better?

Peaks

Introduction

• Algorithms and Data Structures

• Peaks

• Algorithm 1

• Algorithm 2

• Algorithm 3

FINDMAX(A, n)
max = 0

 for i = 0 to n-1
if (A[i] > A[max]) max = i

return max

• Observation. A maximal entry A[i] is a peak.

• Algorithm 2. Find a maximal entry in A with FINDMAX(A, n).

Algorithm 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 7 15 17 11 2 3 6 8 7 5 9 5 23

• Experimental analysis. Better constants?

Theoretical Analysis

c4

n·c5

c6

FINDMAX(A, n)
max = 0

 for i = 0 to n-1
if (A[i] > A[max]) max = i

return max

• Running time. What is the running time T(n) for algorithm 2?

T(n) = c4 + n·c5 + c6 = Θ(n)

se
c.

 p
r 1

00
0

se
ar

ch
es

0

17,5

35

52,5

70

array size
100k 300k 500k 700k 900k 1.1m 1.3m 1.5m 1.7m 1.9m

Alg 1 Alg 2 • Theoretical analysis.

• Algorithm 1 and 2 find a peak in Θ(n) time.

• Experimental analysis.

• Algorithm 1 and 2 run in Θ(n) time in practice.

• Algorithm 2 is a constant factor faster than algorithm 1.

• Challenge. Can we do significantly better?

Peaks

Introduction

• Algorithms and Data Structures

• Peaks

• Algorithm 1

• Algorithm 2

• Algorithm 3

• Clever idea.

• Consider any entry A[i] and it's neighbors A[i-1] and A[i+1].

• Where can a peak be relative to A[i]?

• Neighbor are ≤ A[i] ⟹ A[i] is a peak.

• Otherwise A is increasing in at least one direction ⟹ peak must exist in that
direction.

• Challenge. How can we turn this into a fast algorithm?

Algorithm 3

i-1 i i+1

3 10 7

i-1 i i+1

12 10 7

i-1 i i+1

3 10 15

i-1 i i+1

12 10 15

• Algorithm 3.

• Consider the middle entry A[m] and neighbors A[m-1] and A[m+1].

• If A[m] is a peak, return m.

• Otherwise, continue search recursively in half with the increasing neighbor.

Algorithm 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 7 15 17 11 2 3 6 8 7 5 9 5 23

• Algorithm 3.

• Consider the middle entry A[m] and neighbors A[m-1] and A[m+1].

• If A[m] is a peak, return m.

• Otherwise, continue search recursively in half with the increasing neighbor.

Algorithm 3

PEAK3(A,i,j)
m = ⎣(i+j)/2)⎦
if A[m] ≥ neighbors return m
elseif A[m-1] > A[m]

return PEAK3(A,i,m-1)
elseif A[m] < A[m+1]

return PEAK3(A,m+1,j)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 7 15 17 11 2 3 6 8 7 5 9 5 23

• Running time.

• A recursive call takes constant time.

• How many recursive calls?

• A recursive call halves size of interval. We stop when array has size 1.

• 1st recursive call: n/2

• 2nd recursive call: n/4

• ….

• kth recursive call: n/2k

• ….

• ⟹ After ~log2 n recursive call array has size ≤ 1.

• ⟹ Running time is Θ(log n)

• Experimental analysis. Significantly better?

Algorithm 3
PEAK3(A,i,j)

m = ⎣(i+j)/2)⎦
if A[m] ≥ neighbors return m
elseif A[m-1] > A[m]

return PEAK3(A,i,m-1)
elseif A[m] < A[m+1]

return PEAK3(A,m+1,j)

se
c.

 p
r 1

00
0

se
ar

ch
es

0

17,5

35

52,5

70

array size
100k 300k 500k 700k 900k 1.1m 1.3m 1.5m 1.7m 1.9m

Alg 1 Alg 2 Alg 3

• Theoretical analysis.

• Algorithm 1 and 2 finds a peak in Θ(n) time.

• Algorithm 3 finds a peak in Θ(log n) time.

• Experimental analysis.

• Algorithm 1 and 2 run in Θ(n) time in practice.

• Algorithm 2 is a constant factor faster than algorithm 1.

• Algorithm 3 is much, much faster than algorithm 1 and 3.

Peaks

Introduction

• Algorithms and Data Structures

• Peaks

• Algorithm 1

• Algorithm 2

• Algorithm 3

