Weekplan: Priority Queues and Heaps
Philip Bille Inge Li Ggrtz
Reading
Introduction to Algorithms, 4th edition, Cormen, Rivest, Leisersons, and Stein (CLRS): Chapter 6 + Appendix B.5

Exercises
1 Heap Properties and Simulation Solve the following exercises.

1.1 [w] Which of the following trees are heaps?

(@ (b) (©

1.2 [w] Which of the following arrays are heaps? Index 0 is not used and is therefore marked with —

A=[-9,7,8,3,4] B=[-1247,1,210] C=[-5,7,8,3]

1.3 [w] Let S = 4,8,11,5,21,,2,* be a sequence of operations where a number corresponds to an insertion of that
number and * corresponds to an EXTRACTMAX operation. Starting with an empty heap H, show how H looks after
each operation in S.

1.4 Is a sorted array a heap?

1.5 Where can the minimum element be found in a (max-)heap?

1.6 Show that INSERT, EXTRACTMAX and INCREASEKEY maintains the heap property.

1.7 [*] Suppose we have k sorted arrays containing in total n elements. Show how to merge the array into a single

sorted array in time O(nlogk).

2 Priority Queue Operations We now want to extend the set of operations on priority queues. We are interested in
the following operations.

e REMOVELARGEST(m): remove the m largest elements in the priority queue.

DELETE(x): remove the element x from the priority queue.

FUSION(x, y): remove x and y from the priority queue and add the element z with key x.key + y.key.

THRESHOLD(k): return the elements in the priority queue with key > k.

EXTRACTMIN: Remove and return the element with the lowest key.

We want to support these operations efficiently, while maintaining the complexities of the of standard operations. Let n
be the number of elements in the priority queue. Solve the following exercises.



2.1 Extend the priority queue to support REMOVELARGEST(m) in O(mlogn) time.
2.2 Extend the priority queue to support DELETE and FusION in O(logn) time.

2.3 [*] Extend the priority queue to support THRESHOLD in O(m) time, where m is the number of elements with key
> k.

2.4 [+] Extend the priority queue to support EXTRACTMIN in O(logn) time.
3 Satellite Data Let A[0..n] be a heap represented as an array. Each element x in the heap is represented by an index
i og the key stored in A[i]. It is often useful to store some extra information (called satellite data) associated with an
element (for instance if we want to store persons in a heap the satellite data could be age, gender, heigh, weight, etc).
Show how to support access to satellite data in O(1) time only given the index i while still maintaining the running times
for the standard heap operations.

4 Heap Properties Let T be a complete binary tree of height h. Solve the following exercises.

4.1 Show the number of nodes in T is n = 2"*1 — 1. Hint: Argue that the number of nodesin T isn=1+2+4+---2"
and consider the binary representation of this number.

4.2 Show that the sum,S=n/4-1+n/8-2+n/16-3+n/32-4+-.-=0©(n). Hint: Calculate S —S/2.
5 Task Delegation Josefine is in charge of the local student organization at The University of Algorithms. The orga-
nization gets tasks they must complete. Each task has a unique id and a unique difficulty. Over time new tasks are given
to the organization, and Josefine is then responsible for delegating these to the members of the organization. When a

member is ready to do a new task, he/she asks Josefine for a new task. Josefine likes to challenge her members, so she
always pick the most difficult currently available task when a member requests a new task.

5.1 Give a data structure that supports the following operations:

e NEWTASK(i,d): Add the task with id i and difficulty d to the set of tasks.
e REQUESTTASK(): Remove the task with the highest difficulty from the set of tasks and returns its id.

5.2 [{] Implement your data structure.

6 Sums LetA[0..n— 1] be an array of integers. We are interested in the following operations on A.
e SUM(i,j): compute A[i]+A[i+ 1]+ --+A[j].
e CHANGE(i,x): setA[i] = x.
Solve the following exercises.
6.1 [w] Give a simple data structure that supports SUM in O(1) time and uses O(n?) space.
6.2 [x] Give a data structure that supports SUM in O(1) time and uses O(n) space.

6.3 [*x] Give a data structure that supports both Sum and CHANGE in O(logn) time and uses O(n) space.



