
Weekplan: Priority Queues and Heaps

Philip Bille Inge Li Gørtz

Reading

Introduction to Algorithms, 4th edition, Cormen, Rivest, Leisersons, and Stein (CLRS): Chapter 6 + Appendix B.5

Exercises

1 Heap Properties and Simulation Solve the following exercises.

1.1 [w] Which of the following trees are heaps?

16

13

57

4

11

9 1

20

18

1516

13 4 7 19

14

11

2

10

9

8

6

3 2

7

5

1

4

(b) (c)(a)

1.2 [w] Which of the following arrays are heaps? Index 0 is not used and is therefore marked with −

A= [−, 9, 7, 8, 3, 4] B = [−, 12, 4, 7, 1, 2, 10] C = [−, 5, 7, 8, 3]

1.3 [w] Let S = 4, 8, 11, 5, 21,󰂏, 2,󰂏 be a sequence of operations where a number corresponds to an insertion of that
number and 󰂏 corresponds to an EXTRACTMAX operation. Starting with an empty heap H, show how H looks after
each operation in S.

1.4 Is a sorted array a heap?

1.5 Where can the minimum element be found in a (max-)heap?

1.6 Show that INSERT, EXTRACTMAX and INCREASEKEY maintains the heap property.

1.7 [∗] Suppose we have k sorted arrays containing in total n elements. Show how to merge the array into a single
sorted array in time O(n log k).

2 Priority Queue Operations We now want to extend the set of operations on priority queues. We are interested in
the following operations.

• REMOVELARGEST(m): remove the m largest elements in the priority queue.

• DELETE(x): remove the element x from the priority queue.

• FUSION(x , y): remove x and y from the priority queue and add the element z with key x .key+ y.key.

• THRESHOLD(k): return the elements in the priority queue with key ≥ k.

• EXTRACTMIN: Remove and return the element with the lowest key.

We want to support these operations efficiently, while maintaining the complexities of the of standard operations. Let n
be the number of elements in the priority queue. Solve the following exercises.

1

2.1 Extend the priority queue to support REMOVELARGEST(m) in O(m log n) time.

2.2 Extend the priority queue to support DELETE and FUSION in O(log n) time.

2.3 [∗] Extend the priority queue to support THRESHOLD in O(m) time, where m is the number of elements with key
≥ k.

2.4 [∗] Extend the priority queue to support EXTRACTMIN in O(log n) time.

3 Satellite Data Let A[0..n] be a heap represented as an array. Each element x in the heap is represented by an index
i og the key stored in A[i]. It is often useful to store some extra information (called satellite data) associated with an
element (for instance if we want to store persons in a heap the satellite data could be age, gender, heigh, weight, etc).
Show how to support access to satellite data in O(1) time only given the index i while still maintaining the running times
for the standard heap operations.

4 Heap Properties Let T be a complete binary tree of height h. Solve the following exercises.

4.1 Show the number of nodes in T is n= 2h+1−1. Hint: Argue that the number of nodes in T is n= 1+2+4+ · · ·2h

and consider the binary representation of this number.

4.2 Show that the sum, S = n/4 · 1+ n/8 · 2+ n/16 · 3+ n/32 · 4+ · · ·= Θ(n). Hint: Calculate S − S/2.

5 Task Delegation Josefine is in charge of the local student organization at The University of Algorithms. The orga-
nization gets tasks they must complete. Each task has a unique id and a unique difficulty. Over time new tasks are given
to the organization, and Josefine is then responsible for delegating these to the members of the organization. When a
member is ready to do a new task, he/she asks Josefine for a new task. Josefine likes to challenge her members, so she
always pick the most difficult currently available task when a member requests a new task.

5.1 Give a data structure that supports the following operations:

• NEWTASK(i, d): Add the task with id i and difficulty d to the set of tasks.

• REQUESTTASK(): Remove the task with the highest difficulty from the set of tasks and returns its id.

5.2 [†] Implement your data structure.

6 Sums Let A[0..n− 1] be an array of integers. We are interested in the following operations on A.

• SUM(i, j): compute A[i] + A[i + 1] + · · ·+ A[j].

• CHANGE(i, x): set A[i] = x .

Solve the following exercises.

6.1 [w] Give a simple data structure that supports SUM in O(1) time and uses O(n2) space.

6.2 [∗] Give a data structure that supports SUM in O(1) time and uses O(n) space.

6.3 [∗∗] Give a data structure that supports both SUM and CHANGE in O(log n) time and uses O(n) space.

2

