Priority Queues

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- · Building a Heap
- Heapsort

Philip Bille

Priority Queues

- Priority queues. Maintain dynamic set S supporting the following operations. Each element has key x.key and satellite data x.data.
 - MAX(): return element with largest key.
 - EXTRACTMAX(): return and remove element with largest key.
 - INCREASEKEY(x, k): set x.key = k. (assume $k \ge x.key$)
 - INSERT(x): set $S = S \cup \{x\}$

Priority Queues

Priority Queues

- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort

Priority Queues

• Applications.

- Scheduling
- Shortest paths in graphs (Dijkstra's algorithm)
- Minimum spanning trees in graphs (Prim's algorithm)
- · Compression (Huffman's algorithm)
- ...
- Challenge. How can we solve problem with current techniques?

Priority Queues

• Solution 1: Linked list. Maintain S in a doubly-linked list.

- MAX(): linear search for largest key.
- EXTRACTMAX(): linear search for largest key. Remove and return element.
- INCREASEKEY(x, k): set x.key = k.
- INSERT(x): add element to front of list (assume element does not exist in S beforehand).
- Time.
 - MAX and EXTRACTMAX in O(n) time (n = |S|).
 - INCREASEKEY and INSERT in O(1) time.
- Space.
 - O(n).

Priority Queues

Data structure	Max	EXTRACTMAX	INCREASEKEY	INSERT	Space
linked list	O(n)	O(n)	O(1)	O(1)	O(n)
sorted linked list	O(1)	O(1)	O(n)	O(n)	O(n)

• Challenge. Can we do significantly better?

Priority Queues

• Solution 2: Sorted linked list. Maintain S in a sorted doubly-linked list.

- MAX(): return first element.
- EXTRACTMAX(): return and remove first element.
- INCREASEKEY(x, k): set x.key = k. Linear search to move x to correct position.
- INSERT(x): linear search to insert x at correct position.
- Time.
 - MAX and EXTRACTMAX in O(1) time.
 - INCREASEKEY and INSERT in O(n) time.
- Space.
 - O(n).

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort

Trees

Rooted trees.

- Nodes (or vertices) connected with edges.
- Connected and acyclic.
- · Designated root node.
- Special type of graph.

Terminology.

- · Children, parent, descendant, ancestor, leaves, internal nodes, path,...
- · Depth and height.
 - Depth of v = length of path from v to root.
 - Height of v = length of path from v to descendant leaf.
 - Depth of T = height of T = length of longest path from root to a leaf.

Trees

· Binary tree.

Rooted tree.

Heaps · Heaps. Almost complete binary tree. All nodes store one element and the tree satisfies heap-order. • Heap-order. · For all nodes v: · all keys in left subtree and right subtree are \leq v.key. • Max-heap vs min-heap. ≤ v.kev ≤ v.kev

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort

Heap

- Data structure. We need the following navigation operations on a heap.
 - PARENT(x): return parent of x.
 - LEFT(x) : return left child of x.
 - RIGHT(x): return right child of x.
- Challenge. How can we represent a heap compactly to support fast navigation?

Heap

• Array representation.

- Array H[0..n]
- H[0] unused
- H[1..n] stores nodes in level order.
- PARENT(x): return ⊥x/2 」
- LEFT(x) : return 2x.
- RIGHT(x): return 2x + 1
- Time. O(1)
- Space. O(n)

- 31 20 16 7 11 13 10 3 5 2 9 12

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort

Algorithms on Heaps

- BUBBLEUP(X):
 - If heap order is violated at node x because key is larger than key at parent:
 - Swap x and parent
 - Repeat with parent until heap order is satisfied.

• BUBBLEDOWN(x):

- If heap order is violated at node x because key is smaller than key at left or right child:
- Swap x and child c with largest key.
- Repeat with child until heap order is satisfied.

(11)

9

12

3

20

Algorithms on Heaps

• BUBBLEUP(X):

- If heap order is violated at node x because key is larger than key at parent:
- Swap x and parent
- Repeat with parent until heap order is satisfied.
- BUBBLEDOWN(x):
 - If heap order is violated at node x because key is smaller than key at left or right child:
 - Swap x and child c with largest key.
 - Repeat with child until heap order is satisfied.
- Time.
 - BUBBLEUP and BUBBLEDOWN in O(log n) time.
- How can we use them to implement a priority queue?

Priority Queues									
Data structure	Max	EXTRACTMAX	INCREASEKEY	INSERT	Space				
linked list	O(n)	O(n)	O(1)	O(1)	O(n)				
sorted linked list	O(1)	O(1)	O(n)	O(n)	O(n)				
heap	O(1)	O(log n)	O(log n)	O(log n)	O(n)				

• Heaps with array data structure is an example of an implicit data structure.

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort

Building a Heap

- Solution 1: top-down construction
 - · For all nodes in increasing level order apply BUBBLEUP.

• Time.

- For each node of depth d, we use O(d) time.
- 1 node of depth 0, 2 nodes of depth 1, 4 nodes of depth 2, ..., ~n/2 nodes of depth log n.
- \Rightarrow total time is O(n log n)
- · Challenge. Can we do better?

Building a Heap

Solution 2: bottom-up construction

· For all nodes in decreasing level order apply BUBBLEDOWN.

• Time.

- For each node of height h we use O(h) time.
- 1 node of height log n, 2 nodes of height log n 1, ..., n/4 nodes of height 1, n/2 nodes of height 0.
- \Rightarrow total time is O(n) (see exercise)

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort

Heapsort

• Sorting. How can we sort an array H[1..n] using a heap?

• Solution.

- Build a heap for H.
- Apply n EXTRACTMAX.
- Insert results in the end of array.
- Return H.

• Time.

- Heap construction in O(n) time.
- n ExtractMax in O(nlog n) time.
- \Rightarrow total time is O(nlog n).

Priority Queues

- Priority Queues
- Trees and Heaps
- Representations of Heaps
- Algorithms on Heaps
- Building a Heap
- Heapsort

Heapsort

- Theorem. We can sort an array in O(n log n) time.
- Uses only O(1) extra space.
- In-place sorting algorithm.

