
Weekplan: Search Trees

Philip Bille Inge Li Gørtz

Reading

Introduction to Algorithms, 4th edition, Cormen, Rivest, Leisersons, and Stein (CLRS): Chapter 12 + Algorithms, 4th
edition, Sedgewick and Wayne: Chapter 3.3.

Exercises

1 Basics of Binary Search Trees

1.1 [w] Which of the following trees are binary search trees?
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1.2 [w] Where are the elements with respectively the smallest and largest key located in a binary search tree?

1.3 [w] Consider the set of keys {1, 4, 5, 10, 16, 17, 21}. Draw binary search trees of height 2, 3, 4, 5, and 6 containing
these keys.

1.4 [w] Specify the preorder, inorder og postorder sequence of keys for the tree in (b).

1.5 Compare the heap property and the search tree properties.

1.6 [w] Write pseudo code for computing the inorder traversal of a binary search tree.

1.7 Show that if a node v in a binary search has 2 children, then the node with the smallest key > than v.key has no
left child and the node with the largest key < than v.key has no right child. Assume for simplicity that all keys are
distinct. Hint: prove it by contradiction.

2 Basics of 2-3 trees

2.1 [w] Consider the following 2-3 tree. Insert the sequence of keys 4, 10, 1. Show the resulting tree after each step.
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Solution:

2.2 Consider a 2-3 tree T with n items. What is the maximum height and the minimum height of T? Conclude that
the height of T is always Θ(log n).

3 Queries on Balanced Search Trees Consider the following queries on 2-3 trees T .

• PREDECESSOR(k): return the element with the largest key in T that is ≤ k.

• RANGEREPORT(k1, k2): return the set of elements with keys in the range [k1, k2].

• RANGECOUNT(k1, k2): return the number of elements with keys in the range [k1, k2].

For instance, on the small tree in Exercise 2.1, we have that PREDECESSOR(3) returns the element with key 2, PREDE-
CESSOR(7) returns the element with key 6, and PREDECESSOR(6) returns the element with key 6. Similarly, RANGERE-
PORT(3, 8) return the set of elements with keys {5, 6} and RANGECOUNT(3, 8) returns 2.

3.1 Give an algorithm that supports PREDECESSOR in O(log n) time.

3.2 Give an algorithm that supports RANGEREPORT in O(log n+ occ) time, where occ is the number of elements in the
output.

3.3 Give an algorithm that supports RANGECOUNT in O(log n) time. Here you will need to store and maintain some
additional information in the data structure.

4 Inventory Management Suppose you are running a business that sells recycled single socks. The socks arrive from
your suppliers (recycling facilities where people drop off their old socks) at any point in time and you need to keep track
of your current inventory and some basic statistics. Specifically, each sock is identified by a size and a color. We assume
that size and color are represented by an integer. You want to maintain a database D of socks that support the following
operations:

• NEW(s, c): Add a new sock to D of size s and color c.

• SELL(s, c): Remove a sock of size s and color c. Return "unavailable" if there is no such sock in D.

• UNIQUE: Return to total number of distinct socks in D, i.e., the number of different pairs of sizes and colors
combinations of socks that appear in D.

• MAXFREQUENT: Return a combination of size and color of a sock that appear most frequently in D.

Solve the following exercises.

4.1 Give an efficient data structure that supports NEW, SELL, and UNIQUE.

4.2 [∗] Give an efficient data structure that supports all of the operations.
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