
Philip Bille

Search Trees

• Dynamic Ordered Sets

• Binary Search Trees

• Balanced Search Trees

Search Trees

• Dynamic Ordered Sets

• Binary Search Trees

• Balanced Search Trees

• Dynamic Ordered Sets. Maintain dynamic set S supporting the following operations.
Each element x has key x.key and satellite data x.data.

• SEARCH(k): return element x such that x.key = k if it exists. Otherwise return null.

• INSERT(x): add x to S (assume x.key is not already in S).

• DELETE(x): remove x from S.

• We want to maintain elements ordered by the keys. Allows efficient support for
many other important operations and other features.

Dynamic Ordered Sets

3 5 6 10 12 20 24

SEARCH(10)? SEARCH(17)?

• Applications.

• Dictionaries.

• Indexes.

• Filesystem.

• Databases.

•

• Challenge. How can we solve problem with current techniques?

Dynamic Ordered Sets

• Solution 1: linked list. Maintain S in a doubly-linked list.

• SEARCH(k): linear search for largest key ≤ k.

• INSERT(x): insert x in the front of list.

• DELETE(x): remove x from list.

• Time.

• SEARCH in O(n) time (n = |S|).

• INSERT and DELETE in O(1) time.

• Space.

• O(n).

Dynamic Ordered Sets

66 54 1 96 16 41
head

13

• Solution 2: sorted array. Maintain S in an sorted array according to keys.

• SEARCH(k): binary search for k.

• INSERT(x): find index using SEARCH(x.key). Build new array of size +1 with x inserted.

• DELETE(x): build new array of size -1 with element with key k removed.

• Time.

• SEARCH in O(log n) time.

• INSERT and DELETE in O(n) time.

• Space.

• O(n).

Dynamic Ordered Sets

1 2 3 4 5 6 7

1 13 16 41 54 66 96

• Challenge. Can we do significantly better?

Nearest Neighbor

Data structure SEARCH INSERT DELETE Space

linked list O(n) O(1) O(1) O(n)

sorted array O(log n) O(n) O(n) O(n)

Search Trees

• Dynamic Ordered Sets

• Binary Search Trees

• Balanced Search Trees

• Binary tree.

• Rooted tree

• Each internal node has a left child and/or a right

child.

• Binary search tree.

• Binary tree in symmetric order.

• Symmetric order. For each vertex v:

• all vertices in left subtree are < v.key.

• all vertices in right subtree are > v.key.

Binary Search Trees

15

208

14

13

113

1

v

≥ v.key≤ v.key

• Symmetric order ~ inorder traversal outputs the keys
in sorted order.

• Inorder traversal.

• Visit left subtree recursively.

• Visit vertex.

• Visit right subtree recursively.

• Preorder traversal.

• Visit vertex.

• Visit left subtree recursively.

• Visit right subtree recursively.

• Postorder traversal.

• Visit left subtree recursively.

• Visit right subtree recursively.

• Visit vertex.

Binary Search Trees

15

208

14

13

113

1

Inorder: 1, 3, 8, 11, 13, 14, 15, 20

Preorder: 15, 8, 1, 3, 14, 11, 13, 20

Postorder: 3, 1, 13, 11, 14, 8, 20, 15

• Representation. Each node x stores

• x.key

• x.left

• x.right

• x.parent

• (x.data)

• Space. O(n)

Binary Search Trees

15

208

14

13

113

1

8

15
null

null
20

null

null
1 14

null

null
11

null
13

null

null
3

null

root

• SEARCH(k): traverse tree top-down.

• Compare key k against key in node.

• If equal return element. If less go left. If greater go right.

• If we reach bottom, return null.

• Time. O(h)

Binary Search Trees

15

208

14

13

113

1

• INSERT(x): traverse tree top-down and compare keys.

• search for x.

• add x at leaf.

• Time. O(h)

Binary Search Trees

15

208

14

13

113

1

9

15

208

14

13

113

1
INSERT(9)

• INSERT(x): traverse tree top-down and compare keys.

• if less go left; if greater go right; if equal, return node.

• if null, insert x.

• Exercise. Insert following sequence in binary search tree: 6, 14, 3, 8, 12, 9, 34, 1, 7

Binary Search Trees

• Time. O(h)

Binary Search Trees
15

208

14

13

113

1

9

INSERT(x,v)
if (v == null) return x
if (x.key ≤ v.key)

v.left = INSERT(x, v.left)
if (x.key > v.key)

v.right = INSERT(x, v.right)

• DELETE(x):

• 0 children: remove x.

• 1 child: splice x.

• 2 children: find y = node with smallest

key > x.key. Splice y and replace x by y.

Binary Search Trees

x

y

yx

y

x

x

11

20 1 8

15

208

14

13

3

1

DELETE

20

1

8

11

11

• DELETE(x):

• 0 children: remove x.

• 1 child: splice x.

• 2 children: find y = node with smallest

key > x.key. Splice y and replace x by y.

• Time. O(h)

Binary Search Trees

Dynamic Ordered Sets

• Height. Depends on sequence of operations.

• h = Ω(n) worst-case and h = Θ(log n) on average.

• Challenge. Can we maintain height at O(log n) worst-case?

Data structure SEARCH INSERT DELETE Space

linked list O(n) O(1) O(1) O(n)

sorted array O(log n) O(n) O(n) O(n)

binary search tree O(h) O(h) O(h) O(n)

Search Trees

• Dynamic Ordered Sets

• Binary Search Trees

• Balanced Search Trees

• 2-3 Tree.

• Rooted tree.

• Each internal node has 2 or 3 children.

• 2-node: 2 children and 1 key

• 3-node: 3 children and 2 keys.

• Symmetric order.

• Inorder traversal outputs the keys in sorted order.

• Perfect balance.

• Every path from root to a leaf has the same length

• ⇒ height of tree is Θ(log n)

Balanced Search Trees

22

7 14

35 391 5 8 19

28

25

• SEARCH(k): traverse tree top-down.

• Compare key k against keys in node.

• If equal return element. Otherwise, recurse in child with interval containing k and

recurse.

• If we reach bottom, return null.

• Time. O(log n)

Balanced Search Trees

22

7 14

35 391 5 8 19

28

25

• INSERT(x):

• Search for x.

• Add x at leaf.

• If too large, move middle key to parent. Repeat if necessary.

• Time. O(log n)

Balanced Search Trees

22

7 14

35 391 5 8 19

28

25

22

7 14

35 391 5 8 19

28

25

INSERT 15

15 19

42

35 39 4235 42

39
28 39

4

1 4 5

4

1 5

4 7 144 14

7

7 22

• DELETE(x):

• Search for x.

• If x is a not a leaf, find node with smallest key > x.key, swap with x, and delete it.

• If too small, take from parent. Repeat if necessary.

• Time. O(log n)

Balanced Search Trees

22

7 14

35 391 5 8 19

28

25

• Can we do better?

• Many variants of balanced search trees supporting many different operations.

• Many efficient practical solutions.

• Optimal time bounds for comparison-based data structures.

• Even better bounds possible with more advanced techniques.

Dynamic Ordered Sets

Data structure SEARCH INSERT DELETE Space

linked list O(n) O(1) O(1) O(n)

sorted array O(log n) O(n) O(n) O(n)

binary search tree O(h) O(h) O(h) O(n)

2-3 tree O(log n) O(log n) O(log n) O(n)

Search Trees

• Dynamic Ordered Sets

• Binary Search Trees

• Balanced Search Trees

