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• Dynamic Ordered Sets. Maintain dynamic set S supporting the following operations. 
Each element x has key x.key and satellite data x.data. 

• SEARCH(k): return element x such that x.key = k if it exists. Otherwise return null.

• INSERT(x): add x to S (assume x.key is not already in S). 

• DELETE(x): remove x from S.


• We want to maintain elements ordered by the keys. Allows efficient support for 
many other important operations and other features. 
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• Applications. 

• Dictionaries.

• Indexes.

• Filesystem. 

• Databases. 

• ....


• Challenge. How can we solve problem with current techniques?

Dynamic Ordered Sets



• Solution 1: linked list. Maintain S in a doubly-linked list.


• SEARCH(k): linear search for largest key ≤ k.

• INSERT(x): insert x in the front of list. 

• DELETE(x): remove x from list.


• Time.

• SEARCH in O(n) time (n = |S|).

• INSERT and DELETE in O(1) time.


• Space.

• O(n).
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• Solution 2: sorted array. Maintain S in an sorted array according to keys.


• SEARCH(k): binary search for k.

• INSERT(x): find index using SEARCH(x.key). Build new array of size +1 with x inserted. 

• DELETE(x): build new array of size -1 with element with key k removed. 


• Time.

• SEARCH in O(log n) time.

• INSERT and DELETE in O(n) time.


• Space.

• O(n).
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• Challenge. Can we do significantly better?

Nearest Neighbor

Data structure SEARCH INSERT DELETE Space

linked list O(n) O(1) O(1) O(n)

sorted array O(log n) O(n) O(n) O(n)
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• Binary tree. 

• Rooted tree 

• Each internal node has a left child and/or a right 

child.   

• Binary search tree. 


• Binary tree in symmetric order. 

• Symmetric order. For each vertex v:


• all vertices in left subtree are < v.key. 

• all vertices in right subtree are > v.key. 
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• Symmetric order ~ inorder traversal outputs the keys 
in sorted order. 


• Inorder traversal. 

• Visit left subtree recursively.

• Visit vertex.

• Visit right subtree recursively.


• Preorder traversal. 

• Visit vertex.

• Visit left subtree recursively.

• Visit right subtree recursively.


• Postorder traversal.

• Visit left subtree recursively.

• Visit right subtree recursively.

• Visit vertex.
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Preorder: 15, 8, 1, 3, 14, 11, 13, 20

Postorder: 3, 1, 13, 11, 14, 8, 20, 15



• Representation. Each node x stores 

• x.key

• x.left

• x.right

• x.parent

• (x.data)


• Space. O(n)
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• SEARCH(k): traverse tree top-down. 

• Compare key k against key in node. 

• If equal return element. If less go left. If greater go right.

• If we reach bottom, return null. 


• Time. O(h)
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• INSERT(x): traverse tree top-down and compare keys.

• search for x.

• add x at leaf. 


• Time. O(h)
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• INSERT(x): traverse tree top-down and compare keys.

• if less go left; if greater go right; if equal, return node. 

• if null, insert x.


• Exercise. Insert following sequence in binary search tree: 6, 14, 3, 8, 12, 9, 34, 1, 7

Binary Search Trees



• Time. O(h)

Binary Search Trees
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INSERT(x,v) 
if (v == null) return x
if (x.key ≤ v.key) 

v.left = INSERT(x, v.left)
if (x.key > v.key) 

v.right = INSERT(x, v.right)



• DELETE(x):

• 0 children: remove x. 

• 1 child: splice x.

• 2 children: find y = node with smallest 

key > x.key. Splice y and replace x by y.
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• DELETE(x):

• 0 children: remove x. 

• 1 child: splice x.

• 2 children: find y = node with smallest 

key > x.key. Splice y and replace x by y.


• Time. O(h)

Binary Search Trees



Dynamic Ordered Sets

• Height.  Depends on sequence of operations. 

• h = Ω(n) worst-case and h = Θ(log n) on average. 


• Challenge. Can we maintain height at O(log n) worst-case? 

Data structure SEARCH INSERT DELETE Space

linked list O(n) O(1) O(1) O(n)

sorted array O(log n) O(n) O(n) O(n)

binary search tree O(h) O(h) O(h) O(n)
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• 2-3 Tree. 

• Rooted tree.

• Each internal node has 2 or 3 children.


• 2-node: 2 children and 1 key

• 3-node: 3 children and 2 keys. 


• Symmetric order.

• Inorder traversal outputs the keys in sorted order. 


• Perfect balance. 

• Every path from root to a leaf has the same length 


• ⇒ height of tree is Θ(log n) 

Balanced Search Trees
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• SEARCH(k): traverse tree top-down. 

• Compare key k against keys in node. 

• If equal return element. Otherwise, recurse in child with interval containing k and 

recurse. 

• If we reach bottom, return null. 


• Time. O(log n)
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• INSERT(x): 

• Search for x. 

• Add x at leaf. 

• If too large, move middle key to parent. Repeat if necessary. 


• Time. O(log n)

Balanced Search Trees
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• DELETE(x): 

• Search for x. 

• If x is a not a leaf, find node with smallest key > x.key, swap with x, and delete it.

• If too small, take from parent. Repeat if necessary.  


• Time. O(log n)

Balanced Search Trees
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• Can we do better? 

• Many variants of balanced search trees supporting many different operations.  

• Many efficient practical solutions. 

• Optimal time bounds for comparison-based data structures.  

• Even better bounds possible with more advanced techniques.  

Dynamic Ordered Sets

Data structure SEARCH INSERT DELETE Space

linked list O(n) O(1) O(1) O(n)

sorted array O(log n) O(n) O(n) O(n)

binary search tree O(h) O(h) O(h) O(n)

2-3 tree O(log n) O(log n) O(log n) O(n)
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