Introduction to Graphs

- Undirected Graphs
* Representation
« Depth-First Search
- Connected Components
 Breadth-First Search
- Bipartite Graphs

Philip Bille

Introduction to Graphs

- Undirected Graphs

Undirected graphs

- Undirected graph. Set of vertices pairwise joined by edges.

edge

vrtex —» O Y N
g& Ow®
alo Q\‘@

4

- Why graphs?
* Models many natural problems from many different areas.
« Thousands of practical applications.
« Hundreds of well-known graph algorithms.

Visualizing the Internet

http://en.wikipedia.org/wiki/Opte_Project

Visualizing Friendships on Facebook

I aCEbOOk December 2010

"Visualizing friendships", Paul Butler

London Metro

1 2 3 4 5 6 7 3 5
Chesham == Watford Junction () Epping @
Chalfont & Theydon Bo
(== Watford High Street i SRR
O— Watford A @) High Barnet Cockfosters. Debden o
mersham ==Bushe
= Croxley 5 Totteridge & Whetstone Oakwood Loughton
. Carpenders Park (&) "
Rickmansworth Wy Moor Park (&) Woodside Park outeatl Buckhurst Hill
Hatch End. i Roding Gran
Northwood Mill Hill East’ (&) West Finchley ESEED Valley frifd
== West Ruislip. Northwood Edgware
Hitls Headstone Lane +
gdon Ruislip Stanmore - Bounds Green
Ruistip Manor == Harrow & Burnt Oak &) Finchley Central
vt Wealdstone Canons Park Wood Green Woodford
ickenham Colindale’ East Fi Fairlop o
Eastcote North H: ast Finchley i B
arrow Queensbury Turnpike Lane Harringay South Woodford
- Hendon Central : Barkingside o
larrow- Northwick Crouch gside
Ruislip on-the-Hill ark Highgate Hill, & South Tottenham Snaresbrook =
Gardens Rayners Lane Brent Cross Seven Blackh Newbury Park 4
Weet Gospel Archway Manor House Scvers 2= Blackhorse
Harrow South Kanton Golders Green Onk & O OO Redbridge
South Harrow Hampstead /" Upper Holloway O i
= South Ruisip North Wembley Hampstead Heath @) Tottenham Walthamstow (L ——
’ Tufnell Park Arsenal, Hale = Central = anstea an i
Finsbury Hill == Upminster
== Wembley Central Finsbur %) Leytonstone i P B
i Finchley R 2,
Sudbury Hill o Stonebridge Park Willesden Green e Ao Kentish™\ £ iolewaylioad Walthamstow Leyton Leytonstone Upminster Bridge,
Northol T Belsize Park” N TOWN West Kentish Town 2 g Queen's Road Midland Road High Road N
erete Hartesden Kensal Brondesbury’ S Caledonian Road mona Dalston STEE
S D Willesden Junction J& i Park West Hampstead = Chalk Farm! Kingsland Leyton 4 Dagenham (3
e — Hackr EStratford East, Elm Park
Kensal Green Frchcesuy e i ‘Fcamden Town Caledonian ﬂ N\ _Centrat International Wanstead Park m Par!
Alpertond Swiss Cottage B:r‘:tas::ry Canonbury. gy ()
Queen's Park urn South Mornington Dalston Junction = Dagenham
St. John's Wor Heath
== Greenford HighRoad Hampstead ol od rescent. e Homarton Hackue] 4 leathway
Kings Cross I Wick Woodgrange Park econtree
Edgware i Haggerston (&) 0
Perivale i Great pney
Paddington= Road Marylebone = saer Poriond Euston(d) -?' &) siattors &
Warwick Avenue Sl street LS5 £ High Street Barking =
\ N
L Royal Oak T i Hoxton () Pudding
[\ 7 > \ Ml Lane | gy Abbey East Ham
Westbourne Park Old Street = Bethnal Road
) B dgtswm Warren street(f Euston 3 Q Green. Mile End ! P oron parc
on Par)
Park Royal Road Regent's Park Farringdon P
Ladbroke Grove egent's Parl = == Liverpool ‘Shoreditch olai
Bayswater Russell High Stree aistow
Latimer Road Square Barbican _ igh Street
North Ealing West Ham =
East White)\ Shepherd's Notting | Lancaster Bond Chancery Moorgate =
Acton City | \HillGate ~ Gate street Lane
== Ealing Broadway St paut's ©) star Lane
West. North Holland Queensway Marble Tottenham Holborn A
Acton Acton Park Arch Court Road “FBank
Wood Lane e i
ovent Garden % Canning
High Street G g Town Royal
Acton Central, i f Green Park £ R
T g Shepherd's Bush Kensington O Leicester Square ‘ :) X Vi
aling Common Market | (o=l Hyde Park Corner, Pccadily 2= Cannon Street 90 G 9 Custom House for ExCel.
: s imehou :‘ i)
5 South Acton - (Olympia) Knightsbridge, Mansion House. Monument ower - 25 & E’J‘Y‘LT‘S s \é) nce Regent
e et w ’
Barons Gloucester = Charing () < 2 Blackfriars Gateway | WapPing o=t F N, Royal Albert
. Acton Town Hammersmith ou St.James's N - River Thames W 2
South Ealing Victons 7 Temple Y & I SR S Svertown N\ Beckton Park
3 y s o Rotherhithe 1| ||+ Canary Whart 2 N
I Cyprus
chiswick (ffTurnham Stamford Ravenscourt West Earl South Sloane Westminster Embankment T ©) € X N\
Park reent Brook Park Kensington || | Coure Kensington Square 1 = / / London Bermondsey ~ Canada I North ng;t\sfch 2. y
% Bridge Water FHeron Guays) Peninsula Pontoon Dock N\ _ B
= West Brompton () F Waterloo == I & Gallions
- N SUTFEy G South Quay () _ London each
urrey Quays City Airport &
Gunnersbury . I o Beckton
rossharbour)
:wnsl‘,w Hounslow East Fulham Broadway (3) pimticos| | | Southwark ’f’ | King George V
West Kew Gardens X Mudchute € \
Hounslow Central parsons Greend mperat_ ? o
Hatton Cross) a Lambeth Island Gardens ()
Richmond = Putney Bridged | North L\)
Heathro 4 .
Terminals 1,2,3 - B = Woolwich
East Putney] O e Greanmich = reen
2= Queens Road
Terminal 4 Southfields Vg Elephant & Castle = I . R
2Clapham ONewCross (&) New Cross = &) Greenwich =
Wimbledon Park; Gate= ,Is Deptford Bridge
Heathrow Terminal 5 Wandsworth Kennington | ’ ¢
2 2= Wimbledon () == Peckham Rye, Brockley If
€) Elverson Road

© Transport for London

Clapham High Street

Clapham North

Stockwell
Denmark Hill =

Clapham Common,
Clapham South,

=Balham

Tooting Bec

‘Tooting Broadway

London metro,

® Brixton =

== Crystal Palace

London Transport

Honor Oak Park If
® Lewisham =
(@) Forest Hill
II
(@) sydenham =

Penge West

(O Norwood Junction =

(@) West Croydon = st

This diagram is an evolution of the original design conceived in 1931 by Harry Beck

Correct at time of going to print, December 2013

Protein Interaction Networks

Protein-protein interaktionsnetverk,
Jeong et al, Nature Review | Genetics

Applications of Graphs

Graph Vertices Edges
communication computers cables
transport intersections roads
transport airports flight routes
games position valid move
neural network neuron synapses
financial network stocks transactions
circuit logical gates connections
food chain species predator-prey
molecule atom bindings

Terminology

« Undirected graph. G = (V, E)
« V = set of vertices
« E = set of edges (each edge is a pair of vertices)
* n= |V, m=|E|
- Path. Sequence of vertices connected by edges.
« Cycle. Path starting and ending at the same vertex.
« Degree. deg(v) = the number of neighbors of v, or edges incident to v.
- Connectivity. A pair of vertices are connected if there is a path between them

V=1{0,1,2,...,12)
E = {(0,1), (0,2) (0,4),(2,3),..., (11,12)}

° n:13,m:15

cycle

path from 0 to 3

Undirected Graphs

. Lemma. ZVGV deg(v) = 2m.

* Proof. How many times is each edge counted in the sum?

B
A 8

Algoritmic Problems on Graphs

 Path. Is there a path connecting s and t?
- Shortest path. What is the shortest path connecting s and t?
« Longest path. What is the longest path connecting s and t?

« Cycle. Is there a cycle in the graph?
« Euler tour. Is there a cycle that uses each edge exactly once?
- Hamilton cycle. Is there a cycle that uses each vertex exactly once?

- Connectivity. Are all pairs of vertices connected?
- Minimum spanning tree. What is the best way of connecting all vertices?

 Biconnectivity. Is there a vertex whose removal would cause the graph to be
disconnected?

 Planarity. Is it possible to draw the graph in the plane without edges crossing?
- Graph isomorphism. Do these sets of vertices and edges represent the same graph?

Introduction to Graphs

* Representation

Representation

« Graph G with n vertices and m edges.
« Representation. We need the following operations on graphs.
« ADJACENT(v, u): determine if u and v are neighbors.
« NEIGHBORS(V): return all neighbors of v.
* INSERT(v, u): add the edge (v, u) to G (unless it is already there).

T

Py I

Adjacency Matrix

2 3 4 5 6 7 8 9 1011 12

1

o
e4
K2
S
)
c
et
% @)
n%u o
O &
o @)
= ye
O Koy
c)
© c
%))
9 .
t A..m.
¥ > ¢
z O ©
C = =
c 8 @ & —
£ Ec %S¢
> S
WCX__uvu_IAO
G%n_”_.b.
L — O O
o 0O =
O & N < E g
“ T « « O Ao
O < O m

ololololololololol~]+]~]|O
ololololololololo]l~]|o] ol -~
ololololololololo]l ~]o] ol -~
ololo|lololololololo]l]| +~]| -~
olololololo]l~|ololo]lolol o
olololololo]l~|ololo]lololo
olololololo]lol~]|+~]o]lo]lolo
o) ol Bl Ral Bad el Kol el Kol el el ol He)
~|olo|l+~|o]l+~]|ololololololo
o) ol Rl Hel Rl ol el el Neol Hol Nol Hol Ne)
~|olo|l+~]|o]l+~]|olololololo]lo
~|olololololololololololo
ol +~|o]l~lololololololo]lo
o al
O N O F VL © ~N 0 O = - =
=
=
—~
—
e}
)
£ €
_m.._u
W c
S(
z O
.m.m
S o
Z 3
w m
MUH
=i
¢ < 2
— ® e
_I
[]

Adjacency List

« Graph G with n vertices and m edges.
+ Adjacency list.
 Array AJO..n-1].

 Ali] is a linked list of all neighbors of i.

« Complexity?
. Space. O(n + ZVEV deg(v)) = O(n + m)

« Time.

« ADJACENT, NEIGHBOURS, INSERT
O(deg(v)) time.

)

© 00O N O 0 b WO N 2 O

/

-
o

—
—

-
N

—> 1 > 2 4
—» O

— O » 3 » 5
—p 2 » 4 > 5
—» O > 3 > 5
—>{ 2 » 3 » 4
—» 7 —> 8
—>» 6

—> 6

—» 10 F—>{ 11 » 12
— 9 —»{12
—>» O |—»{12

——» » 10 > 11

Representation

adjacency matrix O(1) O(n) O(1) O(n2)

adjacency list O(deg(v)) O(deg(v)) O(deg(v)) O(n+m)

- Real world graphs are often sparse.

Representation

n=4

adj = [[] for i in range(n)] 0

adj[0].append(1)

adj[1].append(0

adj[0].append(

adj[3].append(

adj[1].append(

adj[2].append(
(
(
(
(

adj[1].append
adj[3].append
adj[2].append

)
)
)
)
)
)
)
)
adj[3].append(2)

3
0
2
1
3
1
3
2

[[1, 3], [0, 2, 3], [1, 3], [0, 1, 2]]

Introduction to Graphs

« Depth-First Search
- Connected Components

Depth-First Search

« Algorithm for systematically visiting all vertices and edges.
* Depth first search from vertex s.
« Unmark all vertices and visit s.
* Visit vertex v:
« Mark v.

- Visit all unmarked neighbours of v recursively.

* Intuition.
« Explore from s in some direction, until we read dead end.
- Backtrack to the last position with unexplored edges.
* Repeat.

+ Discovery time. First time a vertex is visited.

* Finish time. Last time a vertex is visited.

1/12

Depth-First Search

DFS(s)
time = 0
DFS-VISIT(S)

DFS-VISIT(V)
v.d = time++

mark v
for each unmarked neighbor u
u.ms= vV

DFS-vISITCu)
v.f = time++

« Time. (on adjacency list representation)
« Recursion? once per vertex.
« O(deg(v)) time spent on vertex v.
. = total O(n + ZVeV deg(v)) = O(n + m) time.

 Only visits vertices connected to s.

Depth-First Search

visited = [False for i in range(n)]

def dfs(s):
if (visited[s]):
return
visited[s] = True
print(s)
for u in adj[s]:
dfs(u)

dfs(0)

wnh—+0

Flood Fill

+ Flood fill. Chance the color of a connected area of green pixels.

‘@60 Tux Paint J
Tools) ﬁagl

/ - ™%

aint ' Stamp Rambows.ﬁ'é.rkles

XX . °

Lines Shapes Mirror * Flip .
Abc ™ —=

Text \Magic Blur 'Blocks .
&\ /5 o\

Undo Redo Negative' Fade .

[.

Eraser ' New Chalk Drip .
= .-

Open ave Thick Thin

&' =

At Quit V24 o~ Fill

— ™
60?0% ~ - |/ \
w Click in the picture to fill that area with color.

+ Algorithm.
* Build a grid graph and run DFS.

 Vertex: pixel.
« Edge: between neighboring pixels of same color.

« Area: connected component

Connected Components

+ Definition. A connected component is a maximal subset of connected vertices.

B o

« How to find all connected components?
+ Algorithm.
« Unmark all vertices.
* While there is an unmarked vertex:
« Chose an unmarked vertex v, run DFS from v.
« Time. O(n + m).

Introduction to Graphs

* Breadth-First Search
- Bipartite Graphs

Breadth-First Search

« Breadth first search from s.
- Unmark all vertices and initialize queue Q.
« Mark s and Q.ENQUEUE(s). S
- While Q is not empty:
« v = Q.DEQUEUE().
* For each unmarked neighbor u of v
« Mark u.
« Q.ENQUEUE(uU).

* Intuition.

« Explore, starting from s, in all directions - in increasing distance from s.

« Shortest paths from s.
 Distance to s in BFS tree = shortest distance to s in the original graph.

Shortest Paths

- Lemma. BFS finds the length of the shortest path from s to all other vertices.
* Intuition.
- BFS assigns vertices to layers. Layer i contains all vertices of distance i to s.

L1 Lo
Lo

What does each layer contain?
Lo : {s}
L+ . all neighbours of Lo.

L> . all neighbours of L1 that are not neighbors

L3 all neighbours of Lo that neither are neighbors of Lo not

Li. all neighbours of Li-1 that are not neighbors of any L;for j < i-1
« = all vertices of distance i from s.

Breadth-First Search

BFS(s)
mark s
s.d =0
Q.ENQUEUE(S)
repeat until Q.ISEMPTY()
v = Q.DEQUEUEQ)
for each unmarked neighbor u

mark u
u.d = v.d + 1
Uu.m= Vv

Q. ENQUEUECuU)

« Time. (on adjacency list representation)
- Each vertex is visited at most once.
« O(deg(v)) time spent on vertex v.
. = total O(n + ZVEV deg(v)) = O(n + m) time.

« Only vertices connected to s are visited.

Breadth-First Search

from collections import deque

q = deque()

visited = [False for i in range(n)]
distance = [-1 for i in range(n)]

visited[0] = True
distance[0] =0
g.append(0)
while q:
s = g.popleft()
print(s)
for u in adj[s]:
if (visited[u]):
continue
visited[u] = True
distance[u] = distance[s]+1
g.append(u)

nNwWw—=0

Bipartite Graphs

 Definition. A graph is bipartite if and only if all vertices can be colored red and blue
such that every edge has exactly one red endpoint and one blue endpoint.

« Equivalent definition. A graph is bipartite if and only if its vertices can be partitioned
into two sets V1 and V2 such that all edges go between V1 and Vo.

« Application.

- Scheduling, matching, assigning clients to servers, assigning jobs to machines,
assigning students to advisors/labs, ...

« Many graph problems are easier on bipartite graphs.

Bipartite Graphs

- Challenge. Given a graph G, determine whether G is bipartite.

Bipartite Graphs

« Lemma. A graph G is bipartite if and only if all cycles in G have even length.
* Proof. =

- If G is bipartite, all cycles start and end on the same side.

Bipartite Graphs

« Lemma. A graph G is bipartite if and only if all cycles in G have even length.
* Proof. =

« Choose a vertex v and consider BFS layers Lo, L1, ..., Lk
« All cycles have even length
- = There is no edge between vertices of the same layer

- = We can colors layers with alternating red and blue colors.

« = G is bipartite.

()

Bipartite Graphs

+ Algorithm.
* Run BFS on G.

« For each edge in G, check if it's
endpoints are in the same layer.

* Time.
* O(n + m)

Lo

Lo

L+

L

Lo

Lo

L3

L

Graph Algorithms

Algorithm Time Space
Depth first search O(n + m) O(n + m)
Breadth first search O(n + m) O(n + m)
Connected components O(n + m) O(n + m)
Bipartite O(n + m) O(n + m)

 All on the adjacency list representation.

Introduction to Graphs

- Undirected Graphs
* Representation
« Depth-First Search
- Connected Components
 Breadth-First Search
- Bipartite Graphs

