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Introduction to Graphs

- Undirected Graphs



Undirected graphs

- Undirected graph. Set of vertices pairwise joined by edges.
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- Why graphs?
* Models many natural problems from many different areas.
« Thousands of practical applications.
« Hundreds of well-known graph algorithms.



Visualizing the Internet



http://en.wikipedia.org/wiki/Opte_Project

Visualizing Friendships on Facebook

I aCEbOOk December 2010

"Visualizing friendships", Paul Butler
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Protein Interaction Networks

Protein-protein interaktionsnetverk,
Jeong et al, Nature Review | Genetics



Applications of Graphs

Graph Vertices Edges
communication computers cables
transport intersections roads
transport airports flight routes
games position valid move
neural network neuron synapses
financial network stocks transactions
circuit logical gates connections
food chain species predator-prey
molecule atom bindings




Terminology

« Undirected graph. G = (V, E)
« V = set of vertices
« E = set of edges (each edge is a pair of vertices)
* n= |V, m=|E|
- Path. Sequence of vertices connected by edges.
« Cycle. Path starting and ending at the same vertex.
« Degree. deg(v) = the number of neighbors of v, or edges incident to v.
- Connectivity. A pair of vertices are connected if there is a path between them

V=1{0,1,2,...,12)
E = {(0,1), (0,2) (0,4),(2,3),..., (11,12)}

° n:13,m:15

cycle

path from 0 to 3




Undirected Graphs

. Lemma. ZVGV deg(v) = 2m.

* Proof. How many times is each edge counted in the sum?

B
A 8




Algoritmic Problems on Graphs

 Path. Is there a path connecting s and t?
- Shortest path. What is the shortest path connecting s and t?
« Longest path. What is the longest path connecting s and t?

« Cycle. Is there a cycle in the graph?
« Euler tour. Is there a cycle that uses each edge exactly once?
- Hamilton cycle. Is there a cycle that uses each vertex exactly once?

- Connectivity. Are all pairs of vertices connected?
- Minimum spanning tree. What is the best way of connecting all vertices?

 Biconnectivity. Is there a vertex whose removal would cause the graph to be
disconnected?

 Planarity. Is it possible to draw the graph in the plane without edges crossing?
- Graph isomorphism. Do these sets of vertices and edges represent the same graph?



Introduction to Graphs

* Representation



Representation

« Graph G with n vertices and m edges.
« Representation. We need the following operations on graphs.
« ADJACENT(v, u): determine if u and v are neighbors.
« NEIGHBORS(V): return all neighbors of v.
* INSERT(v, u): add the edge (v, u) to G (unless it is already there).
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Adjacency Matrix
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Adjacency List

« Graph G with n vertices and m edges.
+ Adjacency list.
 Array AJO..n-1].

 Ali] is a linked list of all neighbors of i.

« Complexity?
. Space. O(n + ZVEV deg(v)) = O(n + m)

« Time.

« ADJACENT, NEIGHBOURS, INSERT
O(deg(v)) time.
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Representation

adjacency matrix O(1) O(n) O(1) O(n2)

adjacency list O(deg(v)) O(deg(v)) O(deg(v)) O(n+m)

- Real world graphs are often sparse.



Representation

n=4

adj = [[] for i in range(n)] 0

adj[0].append(1)

adj[1].append(0

adj[0].append(

adj[3].append(

adj[1].append(

adj[2].append(
(
(
(
(

adj[1].append
adj[3].append
adj[2].append

)
)
)
)
)
)
)
)
adj[3].append(2)

3
0
2
1
3
1
3
2

[[1, 3], [0, 2, 3], [1, 3], [0, 1, 2]]



Introduction to Graphs

« Depth-First Search
- Connected Components



Depth-First Search

« Algorithm for systematically visiting all vertices and edges.
* Depth first search from vertex s.
« Unmark all vertices and visit s.
* Visit vertex v:
« Mark v.

- Visit all unmarked neighbours of v recursively.

* Intuition.
« Explore from s in some direction, until we read dead end.
- Backtrack to the last position with unexplored edges.
* Repeat.

+ Discovery time. First time a vertex is visited.

* Finish time. Last time a vertex is visited.



1/12




Depth-First Search

DFS(s)
time = 0
DFS-VISIT(S)

DFS-VISIT(V)
v.d = time++

mark v
for each unmarked neighbor u
u.ms= vV

DFS-vISITCu)
v.f = time++

« Time. (on adjacency list representation)
« Recursion? once per vertex.
« O(deg(v)) time spent on vertex v.
. = total O(n + ZVeV deg(v)) = O(n + m) time.

 Only visits vertices connected to s.



Depth-First Search

visited = [False for i in range(n)]

def dfs(s):
if (visited[s]):
return
visited[s] = True
# print(s)
for u in adj[s]:
dfs(u)

dfs(0)

wnh—+0



Flood Fill

+ Flood fill. Chance the color of a connected area of green pixels.
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+ Algorithm.
* Build a grid graph and run DFS.

 Vertex: pixel.
« Edge: between neighboring pixels of same color.

« Area: connected component



Connected Components

+ Definition. A connected component is a maximal subset of connected vertices.

B o

« How to find all connected components?
+ Algorithm.
« Unmark all vertices.
* While there is an unmarked vertex:
« Chose an unmarked vertex v, run DFS from v.
« Time. O(n + m).



Introduction to Graphs

* Breadth-First Search
- Bipartite Graphs



Breadth-First Search

« Breadth first search from s.
- Unmark all vertices and initialize queue Q.
« Mark s and Q.ENQUEUE(s). S
- While Q is not empty:
« v = Q.DEQUEUE().
* For each unmarked neighbor u of v
« Mark u.
« Q.ENQUEUE(uU).

* Intuition.

« Explore, starting from s, in all directions - in increasing distance from s.

« Shortest paths from s.
 Distance to s in BFS tree = shortest distance to s in the original graph.






Shortest Paths

- Lemma. BFS finds the length of the shortest path from s to all other vertices.
* Intuition.
- BFS assigns vertices to layers. Layer i contains all vertices of distance i to s.

L1 Lo
Lo

What does each layer contain?
Lo : {s}
L+ . all neighbours of Lo.

L> . all neighbours of L1 that are not neighbors

L3 all neighbours of Lo that neither are neighbors of Lo not

Li. all neighbours of Li-1 that are not neighbors of any L;for j < i-1
« = all vertices of distance i from s.



Breadth-First Search

BFS(s)
mark s
s.d =0
Q.ENQUEUE(S)
repeat until Q.ISEMPTY()
v = Q.DEQUEUEQ)
for each unmarked neighbor u

mark u
u.d = v.d + 1
Uu.m= Vv

Q. ENQUEUECuU)

« Time. (on adjacency list representation)
- Each vertex is visited at most once.
« O(deg(v)) time spent on vertex v.
. = total O(n + ZVEV deg(v)) = O(n + m) time.

« Only vertices connected to s are visited.



Breadth-First Search

from collections import deque

q = deque()

visited = [False for i in range(n)]
distance = [-1 for i in range(n)]

visited[0] = True
distance[0] =0
g.append(0)
while q:
s = g.popleft()
# print(s)
for u in adj[s]:
if (visited[u]):
continue
visited[u] = True
distance[u] = distance[s]+1
g.append(u)

nNwWw—=0



Bipartite Graphs

 Definition. A graph is bipartite if and only if all vertices can be colored red and blue
such that every edge has exactly one red endpoint and one blue endpoint.

« Equivalent definition. A graph is bipartite if and only if its vertices can be partitioned
into two sets V1 and V2 such that all edges go between V1 and Vo.

« Application.

- Scheduling, matching, assigning clients to servers, assigning jobs to machines,
assigning students to advisors/labs, ...

« Many graph problems are easier on bipartite graphs.



Bipartite Graphs

- Challenge. Given a graph G, determine whether G is bipartite.




Bipartite Graphs

« Lemma. A graph G is bipartite if and only if all cycles in G have even length.
* Proof. =

- If G is bipartite, all cycles start and end on the same side.




Bipartite Graphs

« Lemma. A graph G is bipartite if and only if all cycles in G have even length.
* Proof. =

« Choose a vertex v and consider BFS layers Lo, L1, ..., Lk
« All cycles have even length
- = There is no edge between vertices of the same layer

- = We can colors layers with alternating red and blue colors.

« = G is bipartite.

()




Bipartite Graphs

+ Algorithm.
* Run BFS on G.

« For each edge in G, check if it's
endpoints are in the same layer.

* Time.
* O(n + m)

Lo

Lo

L+

L

Lo

Lo

L3

L



Graph Algorithms

Algorithm Time Space
Depth first search O(n + m) O(n + m)
Breadth first search O(n + m) O(n + m)
Connected components O(n + m) O(n + m)
Bipartite O(n + m) O(n + m)

 All on the adjacency list representation.
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