Introduction to Graphs

» Undirected Graphs
* Representation
 Depth-First Search

+ Connected Components
 Breadth-First Search

+ Bipartite Graphs

Philip Bille

Introduction to Graphs

+ Undirected Graphs

Undirected graphs

« Undirected graph. Set of vertices pairwise joined by edges.

edge
vertex —» G

e
ae»“" :\‘:

« Why graphs?
+ Models many natural problems from many different areas.
» Thousands of practical applications.
+ Hundreds of well-known graph algorithms.

Visualizing the Internet

http://en.wikipedia.org/wiki/Opte_Project

Visualizing Friendships on Facebook

"Visualizing friendships”, Paul Butler

London Metro

London metro, London Transport

Protein Interaction Networks

Protein-protein interaktionsnetvark, .‘ ’ P
Jeong et al, Nature Review | Genetic

Applications of Graphs

Graph Vertices Edges
communication computers cables
transport intersections roads
transport airports flight routes
games position valid move
neural network neuron synapses
financial network stocks transactions
circuit logical gates connections
food chain species predator-prey
molecule atom bindings

Terminology

* Undirected graph. G = (V, E)
» V = set of vertices
» E = set of edges (each edge is a pair of vertices)
*n=|V[,m=|E|
« Path. Sequence of vertices connected by edges.
« Cycle. Path starting and ending at the same vertex.
+ Degree. deg(v) = the number of neighbors of v, or edges incident to v.
« Connectivity. A pair of vertices are connected if there is a path between them

V={0,1,2,...,12}
deg(2) =3

Q / E ={(0,1), (0,2) (0,4),(2,3),..., (11,12)}
path from 0 to 3 é e ' n=13, m=15

L gsg

Undirected Graphs

. Lemma. Xvev deg(v) =2m

+ Proof. How many times is each edge counted in the sum?

By &0 o

6‘9&9 :\‘g

Algoritmic Problems on Graphs

Path. Is there a path connecting s and t?

Shortest path. What is the shortest path connecting s and t?

Longest path. What is the longest path connecting s and t?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?

Hamilton cycle. Is there a cycle that uses each vertex exactly once?

Connectivity. Are all pairs of vertices connected?

Minimum spanning tree. What is the best way of connecting all vertices?

Biconnectivity. Is there a vertex whose removal would cause the graph to be
disconnected?

Planarity. Is it possible to draw the graph in the plane without edges crossing?

Graph isomorphism. Do these sets of vertices and edges represent the same graph?

Introduction to Graphs

* Representation

Representation

« Graph G with n vertices and m edges.
« Representation. We need the following operations on graphs.
+ ADJACGENT(v, u): determine if u and v are neighbors.
+ NEIGHBORS(v): return all neighbors of v.
+ INSERT(v, u): add the edge (v, u) to G (unless it is already there).

B &0 o

ae»“’ :\‘:

Adjacency Matrix

Adjacency List

« Graph G with n vertices and m edges. G }i N\
» Adjacency list. a ° 6 @ G

+ Array A[0..n-1].

- A[i]is a linked list of all neighbors of i. 9‘
+ Complexity? »
. Space. O(n + Zvev deg(v)) = O(n + m) °
* Time.

» ADJACENT, NEIGHBOURS, INSERT
O(deg(v)) time.

-
a3 o

-
N

0
» Graph G with n vertices and m edges.
+ Adjacency matrix. G e G Q a
» 2D n x narray A.
» Ali,j] = 1if i and j are neighbors, 0 otherwisd e e‘w
« Complexity? » \
» Space O(:Z) ¢ e Q Q
: 0123 456 7 8 9 101112
+ Time. oJof1]1]of1]o]ofo]o]ofo]o]o
+ ADJACENT and INSERT in O(1) time. 1|1]ofofofofo]ojofofofofo]jo
- NEIGHBOURS in O(n) time. 2|tfojolrjof1]ojofojolojo]o
3loJof1]o]1]1]o]ofo]o]o]o]o
4l1]ofof1]ol1]o]ofo]o]o]o]o
5|oJof1]1]1]o]o]ofo]o]o]o]o
6loJofojo]ojo]ol1|1]o]o]o]o
7{ojJo]ofofo]of1]o]ofo]o]ofo
8loJofojo]oJo]1]ofo]o]o]o]o
9lojofojo]olo]ojofo]of1f1]1
10lofo]o]ofo]o|ofo]o]1fo]olf1
11lofo]o]ofo]o|o]o]o]1fo]o]1
12|ofo]o]ofo]ofojo]of1f1]1]0
Representation
Data structure ADJACENT NEIGHBOURS INSERT space
adjacency matrix o(1) O(n) O(1) O(n?)
adjacency list O(deg(v)) O(deg(v)) O(deg(v)) O(n+m)

© 0O N O O b~ W N =< O
éﬂ
]
]

» Real world graphs are often sparse.

Representation

n=4
adj = [[] for i in range(n)] 0
adj[0].append(1)

adj[1].append(0)

adj[0].append(3
adj[3].append(0
adj[1].append(2
adj[2].append(1
adj[1].append(3
adj[3].append(1
adj[2].append(3
adj[3].append(2

)
)
)
)
)
)
)
)

[[1,8],10,2,8][1,3],[0, 1, 2]]

Introduction to Graphs

 Depth-First Search
» Connected Components

Depth-First Search

« Algorithm for systematically visiting all vertices and edges.
+ Depth first search from vertex s.
* Unmark all vertices and visit s.
« Visit vertex v:
* Mark v.
+ Visit all unmarked neighbours of v recursively.

* Intuition.
» Explore from s in some direction, until we read dead end.
» Backtrack to the last position with unexplored edges.
» Repeat.

+ Discovery time. First time a vertex is visited.
« Finish time. Last time a vertex is visited.

Depth-First Search

DFS(s)
time = 0
DFS-visIiT(s) s

DFS-vIsiT(Vv)
v.d = time++

mark v
for each unmarked neighbor u
u.m=v

DFS-visITCu)
v.f = time++

+ Time. (on adjacency list representation)
» Recursion? once per vertex.
+ O(deg(v)) time spent on vertex v.
. = total O(n + ZVEV deg(v)) = O(n + m) time.

+ Only visits vertices connected to s.

Depth-First Search

visited = [False for i in range(n)] o /;\ 5

def dfs(s):
if (visited[s]):
return
visited[s] = True
print(s)
for uin adj[s]:
dfs(u)

dfs(0)

wWN = O

Flood Fill

« Flood fill. Chance the color of a connected area of green pixels.

[-XsXe) Tux Paint
00

VA=

Rt o o

4] . o o

AN)
o o
o o
o o

a0 -

=
€oord™ =™
W Click in the picture to fill that area with color.
« Algorithm.

+ Build a grid graph and run DFS.

+ Vertex: pixel.

+ Edge: between neighboring pixels of same color.
+ Area: connected component

Connected Components

« Definition. A connected component is a maximal subset of connected vertices.

TS
Loy 5%

» How to find all connected components?
« Algorithm.
* Unmark all vertices.
+ While there is an unmarked vertex:
» Chose an unmarked vertex v, run DFS from v.
+ Time. O(n + m).

Introduction to Graphs

» Breadth-First Search
+ Bipartite Graphs

Breadth-First Search

 Breadth first search from s.
« Unmark all vertices and initialize queue Q.
* Mark s and Q.ENQUEUE(s). s
+ While Q is not empty:
+ v = Q.DEQUEUE().
+ For each unmarked neighbor u of v
* Mark u.
+ Q.ENQUEUE(u).

« Intuition.

» Explore, starting from s, in all directions - in increasing distance from s.

+ Shortest paths from s.
- Distance to s in BFS tree = shortest distance to s in the original graph.

Q 0 2 8

NooRo
IF

Shortest Paths

» Lemma. BFS finds the length of the shortest path from s to all other vertices.
* Intuition.
+ BFS assigns vertices to layers. Layer i contains all vertices of distance i to s.

L+ Lo
Lo

+ What does each layer contain?
* Lo: {s}

* L4 all neighbours of Lo.

- L
- L

- all neighbours of L1 that are not neighbors

S}

: all neighbours of L2 that neither are neighbors of Lo not

(&)

o

i- all neighbours of Li-1 that are not neighbors of any L;for j < i-1

= all vertices of distance i from s.

Breadth-First Search

BFS(s)
mark s
s.d=20 S
Q. ENQUEUE(S)
repeat until Q.ISEMPTY()

v = Q.DEQUEVEQ)
for each unmarked neighbor u

mark u
u.d=v.d+1
u.m=v

Q. ENQUEUECU)

+ Time. (on adjacency list representation)
» Each vertex is visited at most once.
+ O(deg(v)) time spent on vertex v.
. = total O(n + ZVEV deg(v)) = O(n + m) time.

+ Only vertices connected to s are visited.

Breadth-First Search

from collections import deque

q = deque()

visited = [False for i in range(n)]
distance = [-1 for i in range(n)]

visited[0] = True
distance[0] =0
g.append(0)
while g:
s = g.popleft()
print(s)
for uin adj[s]:
if (visited[u]):
continue
visited[u] = True
distance[u] = distance[s]+1
g.append(u)

N W= o

Bipartite Graphs

« Definition. A graph is bipartite if and only if all vertices can be colored red and blue
such that every edge has exactly one red endpoint and one blue endpoint.

+ Equivalent definition. A graph is bipartite if and only if its vertices can be partitioned
into two sets V4 and V2 such that all edges go between V4 and Va.

+ Application.

+ Scheduling, matching, assigning clients to servers, assigning jobs to machines,
assigning students to advisors/labs, ...

» Many graph problems are easier on bipartite graphs.

Bipartite Graphs

+ Challenge. Given a graph G, determine whether G is bipartite.

Bipartite Graphs

« Lemma. A graph G is bipartite if and only if all cycles in G have even length.

+ Proof. =

+ If G is bipartite, all cycles start and end on the same side.

Bipartite Graphs

+ Lemma. A graph G is bipartite if and only if all cycles in G have even length.

* Proof. =

+ Choose a vertex v and consider BFS layers Lo, L1, ...

+ All cycles have even length

, L.

+ = There is no edge between vertices of the same layer

« = We can colors layers with alternating red and blue colors.

+ = G is bipartite.

Bipartite Graphs

+ Algorithm.
* Run BFS on G.

+ For each edge in G, check if it's
endpoints are in the same layer.

« Time.
*+ O(n+m)

Graph Algorithms
Algorithm Time Space
Depth first search O(n + m) O(n + m)
Breadth first search O(n + m) O(n + m)
Connected components O(n + m) O(n + m)
Bipartite O(n + m) O(n + m)

+ All on the adjacency list representation.

Introduction to Graphs

» Undirected Graphs
* Representation
 Depth-First Search

+ Connected Components
 Breadth-First Search

+ Bipartite Graphs

