
Philip Bille

Minimum Spanning Trees

• Minimum Spanning Trees

• Representation of Weighted Graphs

• Properties of Minimum Spanning Trees

• Prim's Algorithm

• Kruskal's Algorithm

Minimum Spanning Trees

• Minimum Spanning Trees

• Representation of Weighted Graphs

• Properties of Minimum Spanning Trees

• Prim's Algorithm

• Kruskal's Algorithm

• Weighted graphs. Weight w(e) on each edge e in G.

• Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.

• Minimum spanning tree (MST). Spanning tree of minimum total weight.

Minimum Spanning Trees

1

8

2

4

3

6

7

5

4

24

23

18
9

7

11

14

21

10

5

6

8
16

Graph G

• Weighted graphs. Weight w(e) on each edge e in G.

• Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.

• Minimum spanning tree (MST). Spanning tree of minimum total weight.

Minimum Spanning Trees

1

8

2

4

3

6

7

5

4

24

23

18
9

7

11

14

21

10

5

6

8
16

Not connected

• Weighted graphs. Weight w(e) on each edge e in G.

• Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.

• Minimum spanning tree (MST). Spanning tree of minimum total weight.

Minimum Spanning Trees

1

8

2

4

3

6

7

5

4

24

23

18
9

7

11

14

21

10

5

6

8
16

Connected and cyclic

• Weighted graphs. Weight w(e) on each e in G.

• Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.

• Minimum spanning tree (MST). Spanning tree of minimum total weight.

Minimum Spanning Trees

1

8

2

4

3

6

7

5

4

24

23

18
9

7

11

14

21

10

5

6

8
16

Connected and acyclic = spanning tree

Total weight = 6 + 8 + 23 + 24 + 9 + 11 + 7 = 88

• Weighted graphs. Weight w(e) on each e in G.

• Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.

• Minimum spanning tree (MST). Spanning tree of minimum total weight.

Minimum Spanning Trees

1

8

2

4

3

6

7

5

4

24

23

18
9

7

11

14

21

10

5

6

8
16

Minimum spanning tree

Total weight = 4 + 6 + 5 + 8 + 11 + 9 + 7 = 50

• Network design.

• Computer, road, telephone, electrical, circuit, cable tv, hydralic, …

• Approximation algorithms.

• Travelling salesperson problem, steiner trees.

• Other applications.

• Meteorology, cosmology, biomedical analysis, encoding, image analysis, ...

Applications

Minimum Spanning Trees

• Minimum Spanning Trees

• Representation of Weighted Graphs

• Properties of Minimum Spanning Trees

• Prim's Algorithm

• Kruskal's Algorithm

• Adjacency matrix and adjacency list.

• Similar for directed graphs.

Representation of Weighted Graphs

0

6

1

2

4

5 7

3

6

7

6

3

8

42

2

4

1

2 5

1

7

0 1 2 3 4 5 6 7

0 0 6 8 2 0 0 0 0

1 6 0 3 0 4 0 0 0

2 8 3 0 4 2 6 0 0

3 2 0 4 0 0 0 7 0

4 0 4 2 0 0 1 0 1

5 0 0 6 0 1 0 2 7

6 0 0 0 7 0 2 0 5

7 0 0 0 0 1 7 5 0

4

0

1

2

3

4

5

6

7

1 6 2 8 3 2

0 6 2 3 4 4

0 8 1 3 4 2 5 6 3

0 2 2 4 6 7

1 4 2 2 5 1 7 1

4 1 7 7 6 2 2 6

3 7 5 2 7 5

4 1 5 7 6 5

Minimum Spanning Trees

• Minimum Spanning Trees

• Representation of Weighted Graphs

• Properties of Minimum Spanning Trees

• Prim's Algorithm

• Kruskal's Algorithm

• Assume for simplicity:

• All edge weights are distinct.

• G is connected.

• ⟹ MST exists and is unique.

Properties of Minimum Spanning Trees

• Def. A cut is a partition of the vertices into two non-empty sets.

• Def. A cut edge is an edge crossing the cut.

• Cut property. For any cut, the lightest cut edge is in the MST.

• Proof.

• Assume the lightest cut edge e is not in the MST.

• Replace other cut edge f with e.

• Produces a new spanning with smaller weight.

Cut Property

e

f

cut edges

• Cycle property. For any cycle, the heaviest edge is not in the MST.

• Proof.

• Assume heaviest edge f in cycle is in MST.

• Replace f with lighter edge e in cycle.

• Produces a new spanning tree with smaller weight.

Cycle Property

cycle

f

e

• Cut property. For any cut, the lightest cut edge is in the MST.

• Cycle property. For any cycle, the heaviest edge is not in the MST.

Properties of Minimum Spanning Trees

e

f

f

e

Minimum Spanning Trees

• Minimum Spanning Trees

• Representation of Weighted Graphs

• Properties of Minimum Spanning Trees

• Prim's Algorithm

• Kruskal's Algorithm

• Grow a tree T from some vertex s.

• In each step, add lightest edge with one endpoint i T.

• Stop when T has n-1 edges.

Prim's Algorithm

s

77

66

55

44

33

211

00

4

24

23

18
9

7

11

14

21

10

5

6

8
16

s

2

• Grow a tree T from some vertex s.

• In each step, add lightest edge with one endpoint i T.

• Stop when T has n-1 edges.

• Exercise. Show execution of Prim's algorithm from vertex 0 on the following graph.

Prim's Algorithm

0

6

1

2

4

5 7

3

11

7

10

5

8

62

4

16

1

14 18

3

9

• Lemma. Prim's algorithm computes the MST.

• Proof.

• Consider cut between T and other vertices.

• We add lightest cut edge to T.

• Cut property ⟹ edge is in MST ⟹ T is MST after n-1 steps.

Prim's Algorithm

s

• Implementation. How do we implement Prim's algorithm?

• Challenge. Find the lightest cut edge.

Prim's Algorithm

s

• Implementation. Maintain vertices outside T in priority queue.

• Key of vertex v = weight of lightest cut edge (∞ if no cut edge).

• In each step:

• Find lightest edge = EXTRACT-MIN

• Update weight of neighbors of new vertex with DECREASE-KEY.

Prim's Algorithm

s

5

3

8

11

10 10

3

8

∞

• Time.

• n EXTRACT-MIN

• n INSERT

• O(m) DECREASE-KEY

• Total time with min-heap. O(n log n + n log n + m log n) = O(m log n)

Prim's Algorithm
PRIM(G, s)

for all vertices v∈V
v.key = ∞
v.π = null
INSERT(P,v)

DECREASE-KEY(P,s,0)
while (P ≠ ∅)

u = EXTRACT-MIN(P)
for all neighbors v of u

if (v ∈ P and w(u,v)<key[v])
DECREASE-KEY(P,v,w(u,v))
v.π = u

• Priority queues and Prim's algorithm. Complexity of Prim's algorithm depend on
priority queue.

• n INSERT

• n EXTRACT-MIN

• O(m) DECREASE-KEY

• Greed. Prim's algorithm is a greedy algorithm.

• Makes local optimal choices in each step that lead to global optimal solution.

Prim's Algorithm

Priority queue INSERT EXTRACT-MIN DECREASE-KEY Total

array O(1) O(n) O(1) O(n2)

binary heap O(log n) O(log n) O(log n) O(m log n)

Fibonacci heap O(1)† O(log n)† O(1)† O(m + n log n)

† = amortized

Minimum Spanning Trees

• Minimum Spanning Trees

• Representation of Weighted Graphs

• Properties of Minimum Spanning Trees

• Prim's Algorithm

• Kruskal's Algorithm

• Consider edges from lightest to heaviest.

• In each step, add edge to T if it does not create a cycle.

• Stop when T has n-1 edges.

Kruskal's Algorithm

5

3

8

11

10

4

6

2

9

1

7

9
12

13
15

16

17

0

7

1

3

2

5

6

4

4

24

23

18
9

7

11

14

21

10

5

6

8
16

• Lemma. Kruskal's algorithm computes the MST.

• Proof.

• Algorithms considers edges from light to heavy. At edge e = (u,v):

• Case 1. e creates a cycle and is not added to T.

• e must be heaviest edge on cycle.

• Cycle property ⟹ e is not in MST.

• Case 2. e does not create a cycle and is added to T.

• e must be lightest edge in cut.

• Cut property ⟹ e is in MST.

• ⟹ T is MST when n-1 edges are added.

Kruskal's Algorithm

• Implementation. How do we implement Kruskal's algorithm?

• Challenge. Check if an edge form a cycle.

Kruskal's Algorithm

5

3

8

11

10

4

6

2

9

1

7

9
12

13
15

16

17

• Implementation. Maintain edges in a data structure for dynamic connectivity.

• In each step:

• Check if an edge creates a cycle = CONNECTED.

• Add new edge = INSERT.

Kruskal's Algorithm

5

3

8

11

10

4

6

2

9

1

7

9
12

13
15

16

17

• Time.

• Sorting m edges.

• 1 INIT

• m CONNECTED

• n INSERT

• Total time. O(m log m + n + m log n + n log n) = O(m log n).

• Greed. Kruskal's algorithm is also a greedy algorithm.

Kruskal's Algorithm

KRUSKAL(G)
Sort edges
INIT(n)
for all edges (u,v) i sorted order

if (!CONNECTED(u,v))
INSERT(u,v)

return all inserted edges

• What is the best algorithm for computing MSTs?

Minimum Spanning Trees

Year Time Authors

??? O(m log n) Jarnik, Prim, Dijkstra,
Kruskal, Boruvka, ?

1975 O(m log log n) Yao

1986 O(m log* n) Fredman, Tarjan

1995 O(m)‡ Karger, Klein, Tarjan

2000 O(nɑ(m,n)) Chazelle

2002 optimal Pettie, Ramachandran

‡ = randomized

Minimum Spanning Trees

• Minimum Spanning Trees

• Representation of Weighted Graphs

• Properties of Minimum Spanning Trees

• Prim's Algorithm

• Kruskal's Algorithm

