Weekplan: Priority Queues and Heaps

Philip Bille
Inge Li Gørtz

Reading

Introduction to Algorithms, 4th edition, Cormen, Rivest, Leisersons, and Stein (CLRS): Chapter $6+$ Appendix B. 5

Exercises

1 Heap Properties and Simulation Solve the following exercises.
1.1 [w] Which of the following trees are heaps?

(a)

(b)

(c)
1.2 [w] Which of the following arrays are heaps? Index 0 is not used and is therefore marked with -

$$
A=[-, 9,7,8,3,4] \quad B=[-, 12,4,7,1,2,10] \quad C=[-, 5,7,8,3]
$$

1.3 [w] Let $S=4,8,11,5,21, \star, 2, \star$ be a sequence of operations where a number corresponds to an insertion of that number and \star corresponds to an ExtractMax operation. Starting with an empty heap H, show how H looks after each operation in S.
1.4 Is a sorted array a heap?
1.5 Where can the minimum element be found in a (max-)heap?
1.6 Show that Insert, ExtractMax and IncreaseKey maintains the heap property.
1.7 [*] Suppose we have k sorted arrays containing in total n elements. Show how to merge the array into a single sorted array in time $O(n \log k)$.

2 Priority Queue Operations We now want to extend the set of operations on priority queues. We are interested in the following operations.

- RemoveLargest (m) : remove the m largest elements in the priority queue.
- $\operatorname{Delete}(x)$: remove the element x from the priority queue.
- Fusion (x, y) : remove x and y from the priority queue and add the element z with key x.key $+y$.key.
- Threshold (k) : return the elements in the priority queue with key $\geq k$.
- ExtractMin: Remove and return the element with the lowest key.

We want to support these operations efficiently while maintaining the complexities of the standard operations. Let n be the number of elements in the priority queue. Solve the following exercises.
2.1 Extend the priority queue to support RemoveLargest (m) in $O(m \log n)$ time.
2.2 Extend the priority queue to support Delete and Fusion in $O(\log n)$ time.
$2.3[*]$ Extend the priority queue to support Threshold in $O(m)$ time, where m is the number of elements with key $\geq k$.
2.4 [*] Extend the priority queue to support ExtractMin in $O(\log n)$ time.

3 Satellite Data Let $A[0 . . n]$ be a heap represented as an array. Each element x in the heap is represented by an index i and the key stored in $A[i]$. It is often useful to store some extra information (called satellite data) associated with an element (for instance, if we want to store persons in a heap, the satellite data could be age, gender, height, weight, etc). Show how to support access to satellite data in $O(1)$ time only given the index i while maintaining the running times for the standard heap operations.

4 Heap Properties Let T be a complete binary tree of height h. Solve the following exercises.
4.1 Show the number of nodes in T is $n=2^{h+1}-1$. Hint: Argue that the number of nodes in T is $n=1+2+4+\cdots 2^{h}$ and consider the binary representation of this number.
4.2 Show that the sum, $S=n / 4 \cdot 1+n / 8 \cdot 2+n / 16 \cdot 3+n / 32 \cdot 4+\cdots=\Theta(n)$. Hint: Calculate $S-S / 2$.

5 [\dagger] Task Delegation Josefine is in charge of the local student organization at The University of Algorithms. The organization gets tasks they must complete. Each task has a unique id and a unique difficulty. Over time, new tasks are given to the organization, and Josefine is responsible for delegating these tasks to the organization's members. When a member is ready to do a new task, he/she asks Josefine for a new task. Josefine likes to challenge her members, so she always picks the most difficult currently available task when a member requests a new task. More precisely, we want to support the following operations:

- NEWTASK (i, d) : Add the task with id i and difficulty d to the set of tasks.
- RequestTask(): Remove the task with the highest difficulty from the set of tasks and return its id.

Give a data structure for this problem and implement it.

Input Line 1 contains the integer N that is the total number of tasks. Line $2 \ldots N+1$ is can be either a new task indicated by the letter N followed by two integers id and diff (corresponding to the id of the task and the difficulty) or a member that is ready to receive a new task indicated by the letter R.

Output Line i is the id of the task given to the i th recieve request.

6 Sums Let $A[0 . . n-1]$ be an array of integers. We are interested in the following operations on A.

- $\operatorname{Sum}(i, j)$: compute $A[i]+A[i+1]+\cdots+A[j]$.
- $\operatorname{Change}(i, x): \operatorname{set} A[i]=x$.

Solve the following exercises.
6.1 [w] Give a simple data structure that supports Sum in $O(1)$ time and uses $O\left(n^{2}\right)$ space.
6.2 [*] Give a data structure that supports Sum in $O(1)$ time and uses $O(n)$ space.
$6.3[* *]$ Give a data structure that supports both Sum and Change in $O(\log n)$ time and uses $O(n)$ space.

