- Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Philip Bille

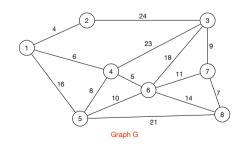
Minimum Spanning Trees

Minimum Spanning Trees

- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

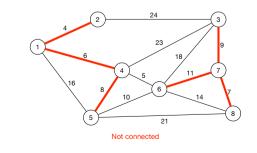
Minimum Spanning Trees

- Weighted graphs. Weight w(e) on each edge e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- · Minimum spanning tree (MST). Spanning tree of minimum total weight.

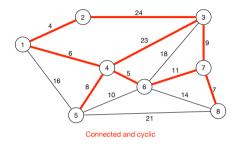


Minimum Spanning Trees

- Weighted graphs. Weight w(e) on each edge e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- · Minimum spanning tree (MST). Spanning tree of minimum total weight.

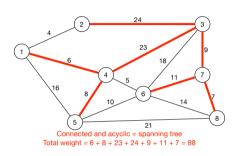


- Weighted graphs. Weight w(e) on each edge e in G.
- $\cdot\,$ Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- Minimum spanning tree (MST). Spanning tree of minimum total weight.



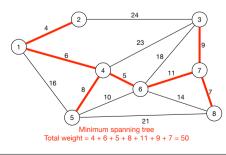
Minimum Spanning Trees

- Weighted graphs. Weight w(e) on each edge e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- Minimum spanning tree (MST). Spanning tree of minimum total weight.



Minimum Spanning Trees

- Weighted graphs. Weight w(e) on each edge e in G.
- Spanning tree. Subgraph T of G over all vertices that is connected and acyclic.
- · Minimum spanning tree (MST). Spanning tree of minimum total weight.



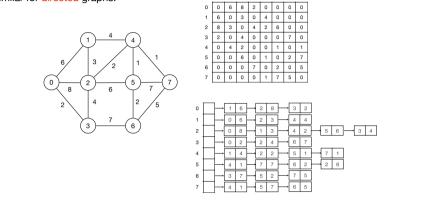
Applications

- Network design.
- · Computer, road, telephone, electrical, circuit, cable tv, hydralic, ...
- Approximation algorithms.
 - $\cdot \;$ Travelling salesperson problem, steiner trees.
- · Other applications.
- $\cdot \,$ Meteorology, cosmology, biomedical analysis, encoding, image analysis, ...

- Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Representation of Weighted Graphs

- Adjacency matrix and adjacency list.
- Similar for directed graphs.



Minimum Spanning Trees

- Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Properties of Minimum Spanning Trees

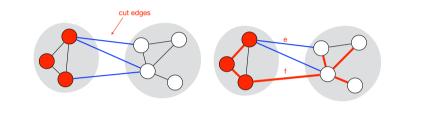
- Assume for simplicity:
- All edge weights are distinct.
- · G is connected.
- $\cdot \ \ \Longrightarrow \ MST$ exists and is unique.

Cut Property

- Def. A cut is a partition of the vertices into two non-empty sets.
- Def. A cut edge is an edge crossing the cut.
- · Cut property. For any cut, the lightest cut edge is in the MST.
- Proof.
 - · Assume the lightest cut edge e is not in the MST.
- Adding e produces a cycle that crosses the cut at least twice. Remove the other edge.
- Produces a new spanning tree with a smaller weight!

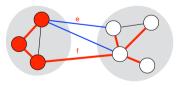
Cycle Property

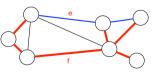
- · Cycle property. For any cycle, the heaviest edge is not in the MST.
- Proof.
 - · Assume heaviest edge f in cycle is in MST.
 - Replace f with lighter edge e in cycle.
 - · Produces a new spanning tree with smaller weight.



Properties of Minimum Spanning Trees

- Cut property. For any cut, the lightest cut edge is in the MST.
- $\cdot\,$ Cycle property. For any cycle, the heaviest edge is not in the MST.



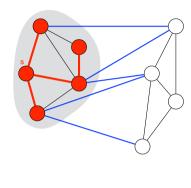


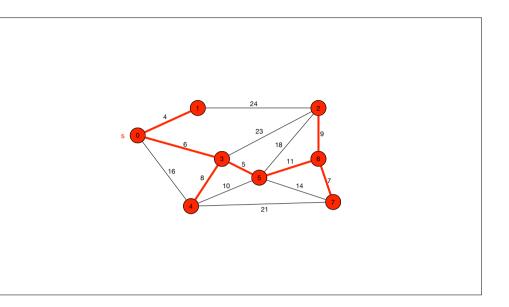
Minimum Spanning Trees

- Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Prim's Algorithm

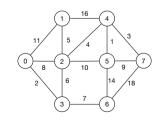
- Grow a tree T from some vertex s.
- In each step, add lightest edge with one endpoint i T.
- Stop when T has n-1 edges.





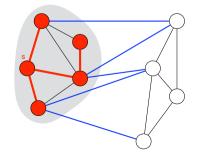
Prim's Algorithm

- · Grow a tree T from some vertex s.
- · In each step, add lightest edge with one endpoint i T.
- Stop when T has n-1 edges.
- Exercise. Show execution of Prim's algorithm from vertex 0 on the following graph.



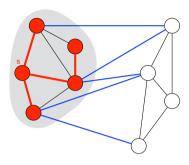
Prim's Algorithm

- Lemma. Prim's algorithm computes the MST.
- Proof.
 - · Consider cut between T and other vertices.
 - We add lightest cut edge to T.
 - $\cdot \ \mbox{Cut property} \Rightarrow \mbox{edge is in MST} \Rightarrow \mbox{T is MST}$ after n-1 steps.



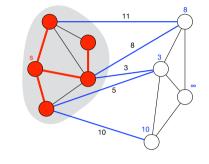
Prim's Algorithm

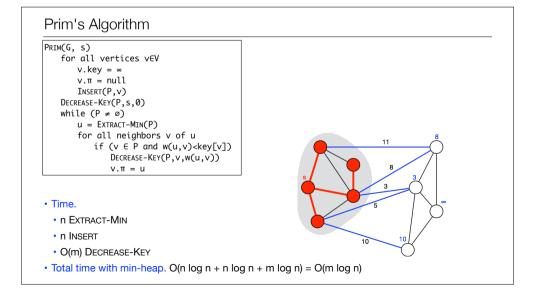
- Implementation. How do we implement Prim's algorithm?
- · Challenge. Find the lightest cut edge.



Prim's Algorithm

- Implementation. Maintain vertices outside T in priority queue.
 - Key of vertex v = weight of lightest cut edge (∞ if no cut edge).
 - · In each step:
 - Find lightest edge = EXTRACT-MIN
 - Update weight of neighbors of new vertex with DECREASE-KEY.





Prim's Algorithm

- Priority queues and Prim's algorithm. Complexity of Prim's algorithm depend on priority queue.
- n Insert
- n Extract-Min
- O(m) DECREASE-KEY

Priority queue	INSERT	EXTRACT-MIN	DECREASE-KEY	Total
array	O(1)	O(n)	O(1)	O(n²)
binary heap	O(log n)	O(log n)	O(log n)	O(m log n)
Fibonacci heap	O(1)†	O(log n)†	O(1)†	O(m + n log n)

† = amortized

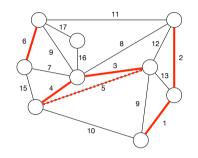
• Greed. Prim's algorithm is a greedy algorithm.

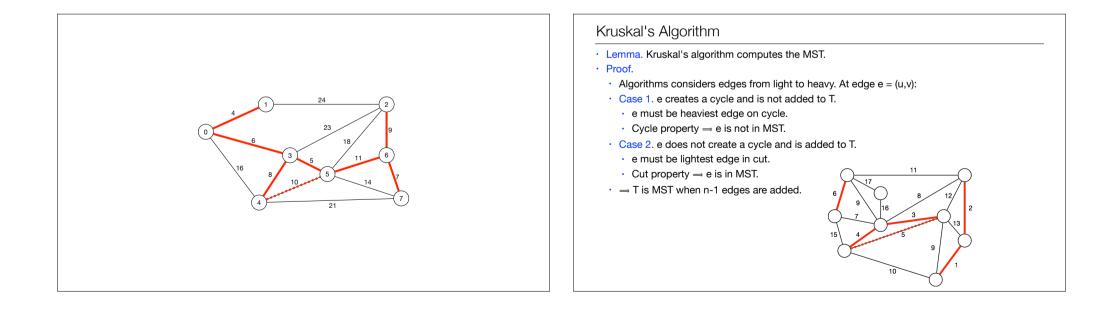
• Makes local optimal choices in each step that lead to global optimal solution.

- Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm

Kruskal's Algorithm

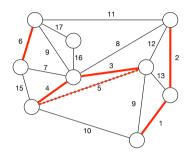
- Consider edges from lightest to heaviest.
- In each step, add edge to T if it does not create a cycle.
- Stop when T has n-1 edges.





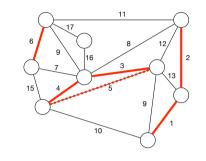
Kruskal's Algorithm

- · Implementation. How do we implement Kruskal's algorithm?
- · Challenge. Check if an edge form a cycle.



Kruskal's Algorithm

- Implementation. Maintain edges in a data structure for dynamic connectivity.
- In each step:
 - Check if an edge creates a cycle = CONNECTED.
 - Add new edge = INSERT.



Kruskal's Algorithm KRUSKAL(G) Sort edges INIT(n) for all edges (u,v) i sorted order if (!CONNECTED(u,v)) 11 INSERT(u,v) return all inserted edges • Time. · Sorting m edges. • 1 INIT m CONNECTED n INSERT • Total time. $O(m \log m + n + m \log n + n \log n) = O(m \log n)$. · Greed. Kruskal's algorithm is also a greedy algorithm.

Minimum Spanning Trees

· What is the best algorithm for computing MSTs?

Year	Time	Authors
???	O(m log n)	Jarnik, Prim, Dijkstra, Kruskal, Boruvka, ?
1975	O(m log log n)	Yao
1986	O(m log* n)	Fredman, Tarjan
1995	O(m)‡	Karger, Klein, Tarjan
2000	O(ma(m,n))	Chazelle
2002	optimal	Pettie, Ramachandran

‡ = randomized

- Minimum Spanning Trees
- Representation of Weighted Graphs
- Properties of Minimum Spanning Trees
- Prim's Algorithm
- Kruskal's Algorithm