Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs

Philip Bille

Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs

Shortest Paths

- Shortest paths. Given a directed, weighted graph G and vertex s, find shortest path from s to all vertices in G.

Shortest Paths

- Shortest paths. Given a directed, weighted graph G and vertex s, find shortest path from s to all vertices in G.
- Shortest path tree. Represent shortest paths in a tree from s.

Applications

- Routing, scheduling, pipelining, ...

Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs

Properties of Shortest Paths

- Assume for simplicity:
- All vertices are reachable from s.
- $\quad \mathrm{a}$ (shortest) path to each vertex always exists.

Properties of Shortest Paths

- Subpath property. Any subpath of a shortest path is a shortest path.
- Proof.
- Consider shortest path from s to t consisting of p_{1}, p_{2} and p_{3}.

- Assume q_{2} is shorter than p_{2}.
- \Longrightarrow Then p_{1}, q_{2} and p_{3} is shorter than p.

Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs

Dijkstra's Algorithm

- Goal. Given a directed, weighted graph with non-negative weights and a vertex s, compute shortest paths from s to all vertices.
- Dijkstra's algorithm.
- Maintains distance estimate v.d for each vertex v = length of shortest known path from s to v.
- Updates distance estimates by relaxing edges.

$$
\begin{aligned}
& \operatorname{ReLAX}(u, v) \\
& \quad \text { if }(v . d>u . d+w(u, v)) \\
& \quad v . d=u . d+w(u, v)
\end{aligned}
$$

Dijkstra's Algorithm

- Initialize s.d = 0 and v. $d=\infty$ for all vertices $v \in V\{s\}$.
- Grow tree T from s.
- In each step, add vertex with smallest distance estimate to T.
- Relax all outgoing edges of v .

Dijkstra's Algorithm

- Initialize s.d $=0$ and v.d $=\infty$ for all vertices $v \in V\{s\}$.
- Grow tree T from s.
- In each step, add vertex with smallest distance estimate to T.
- Relax all outgoing edges of v.
- Exercise. Show execution of Dijkstra's algorithm from vertex 0.

Dijkstra's Algorithm

- Lemma. Dijkstra's algorithms computes shortest paths.
- Proof.
- Consider some step after growing tree T and assume distances in T are correct.
- Consider closest vertex u of s not in T.
- Shortest path from s to u ends with an edge $e=(v, u)$.
- v is closer than u to $s \Longrightarrow v$ is in T. (u was closest not in T)
- \Longrightarrow shortest path to u is in T except e .
- e is relaxed \Longrightarrow distance estimate to v is correct shortest distance.
- Dijkstra adds e to $T \Rightarrow T$ is shortest path tree after $\mathrm{n}-1$ steps.

Dijkstra's Algorithm

- Implementation. How do we implement Dijkstra's algorithm?
- Challenge. Find vertex with smallest distance estimate.

Dijkstra's Algorithm

- Implementation. Maintain vertices outside T in priority queue.
- Key of vertex v = v.d.
- In each step:
- Find vertex u with smallest distance estimate = EXTRACT-Min
- Relax edges that u point to with Decrease-Key.

Dijkstra's Algorithm

```
DIJKSTRA(G, s)
    for all vertices v\inV
    v.d = m
        v.\pi = null
        Insert(P,v)
    DECREASE-Key(P,s,0)
    while ( }P\not=\varnothing
        u = EXTRACT-MIN(P)
        for all v that u point to
            Relax(u,v)
```

- Time.
- n Extract-Min
- n INSERT
- <m Decrease-Key
- Total time with min-heap. $O(n \log n+n \log n+m \log n)=O(m \log n)$

```
Relax(u,v)
    if (v.d > u.d + w(u,v))
        v.d = u.d + w(u,v)
        DeCREASE-Key(P,v,v.d)
        v.\pi = u
```


Dijkstra's Algorithm

- Priority queues and Dijkstra's algorithm. Complexity of Dijkstra's algorithm depend on priority queue.
- n INSERT
- n Extract-Min
- < m DECREASE-KEY

Priority queue	INSERT	EXTRACT-MIN	DECREASE-KEY	Total
array	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
binary heap	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\mathrm{m} \log \mathrm{n})$
Fibonacci heap	$\mathrm{O}(1)^{\dagger}$	$\mathrm{O}(\log \mathrm{n})^{\dagger}$	$\mathrm{O}(1)^{\dagger}$	$\mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n})$

$\dagger=$ amortized

- Greed. Dijkstra's algorithm is a greedy algorithm.

Edsger W. Dijkstra

- Edsger Wybe Dijkstra (1930-2002)

- Dijkstra algorithm. "A note on two problems in connexion with graphs". Numerische Mathematik 1, 1959.
- Contributions. Foundations for programming, distributed computation, program verifications, etc.
- Quotes. "Object-oriented programming is an exceptionally bad idea which could only have originated in California."
- "The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."
- "APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums."

Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs

Shortest Paths on DAGs

- Challenge. Is it computationally easier to find shortest paths on DAGs?
- DAG shortest path algoritme.
- Process vertices in topological order.
- For each vertex v, relax all edges from v.
- Also works for negative edge weights.

Shortest Paths on DAGs

- Lemma. Algorithm computes shortest paths in DAGs.

- Proof.
- Consider some step after growing tree T and assume distances in T are correct.
- Consider next vertex u of s not in T.
- Any path to u consists of vertices in T + edge e to u.
- Edge e is relaxed \Longrightarrow distance to u is shortest.

Shortest Paths on DAGs

- Implementation.
- Sort vertices in topological order.
- Relax outgoing edges from each vertex.
- Total time. $\mathrm{O}(\mathrm{m}+\mathrm{n})$.

Shortest Paths Variants

- Vertices
- Single source.
- Single source, single target.
- All-pairs.
- Edge weights.
- Non-negative.
- Arbitrary.
- Euclidian distances.
- Cycles.
- No cycles
- No negative cycles.

Shortest Paths

- Shortest Paths
- Properties of Shortest Paths
- Dijkstra's Algorithm
- Shortest Paths on DAGs

