Analysis of Algorithms - Analysis of algorithms - · Running time - · Space - · Asymptotic notation - O, Θ , and Ω -notation. - · Experimental analysis of algorithms Philip Bille ## Analysis of Algorithms - · Analysis of algorithms - · Running time - · Space - Asymptotic notation - O, Θ , and Ω -notation. - · Experimental analysis of algorithms ## Analysis of Algorithms - · Goal. Determine and predict computational resources and correctness of algorithms. - · Examples. - · Does my route finding algorithm work? - · How quickly can I answer a query for a route? - · Can it scale to 10k gueries per second? - · Will it run out of memory with large maps? - How many cache-misses does the algorithm generate per query? And how does this affect performance? - · Primary focus. - · Correctness, running time, space usage. - · Theoretical and experimental analysis. ## Running time - · Running time. Number of steps an algorithm performs on an input of size n. - · Steps. - Read/write to memory (x := y, A[i], i = i + 1, ...) - Arithmetic/boolean operations (+, -, *, /, %, &&, ||, &, |, ^, ~) - Comparisons (<, >, =<, =>, =, ≠) - · Program flow (if-then-else, while, for, goto, function call, ..) - · Terminology. Running time, time, time complexity. #### Running time - · Worst-case running time. Maximal running time over all inputs of size n. - · Best-case running time. Minimal running time over all inputs of size n. - · Average-case running time. Average running time over all inputs of size n. - Terminology. Time = worst-case running time (unless otherwise stated). - · Other variants. Amortized, randomized, deterministic, non-deterministic, etc. #### Space - · Space. Number of memory cells used by the algorithm - · Memory cells. - · Variables and pointers/references = 1 memory cells. - Array of length k = k memory cells. - · Terminology. Space, memory, storage, space complexity. # Analysis of Algorithms - · Analysis of algorithms - Running time - Space - · Asymptotic notation - O, Θ , and Ω -notation. - · Experimental analysis of algorithms ## Asymptotic Notation - · Asymptotic notation. - O, Θ , and Ω -notation. - · Notation to bound the asymptotic growth of functions. - · Fundamental tool for talking about time and space of algorithms. #### O-notation • Definition. f(n) = O(g(n)) if $f(n) \le cg(n)$ for large n. #### O-notation - Example. $f(n) = O(n^2)$ if $f(n) \le cn^2$ for large n. - $5n^2 = O(n^2)$? - $5n^2 \le 5n^2$ for large n. - $5n^2 + 3 = O(n^2)$? - $5n^2 + 3 \le 6n^2$ for large n. - $5n^2 + 3n = O(n^2)$? - $5n^2 + 3n \le 6n^2$ for large n. - $5n^2 + 3n^2 = O(n^2)$? - $5n^2 + 3n^2 = 8n^2 \le 8n^2$ for large n. - $5n^3 = O(n^2)$? - $5n^3 \ge cn^2$ for all constants c for large n. #### O-notation - Definition. f(n) = O(g(n)) if $f(n) \le cg(n)$ for large n. - Definition. f(n) = O(g(n)) if exists constants c, $n_0 > 0$, such that for all $n \ge n_0$, $f(n) \le cg(n)$. #### O-notation - · Notation. - · O(g(n)) is a set of functions. - Think of = as \in or \subseteq . - $f(n) = O(n^2)$ is ok. $O(n^2) = f(n)$ is not! #### O-notation - f(n) = O(g(n)) if $f(n) \le cg(n)$ for large n. - · Exercise. - Which are true? (logk n is (log n)k) - $3n + 2n^3 n^2 = O(n^2)$ - $3n^2 + \log n = O(n^3)$ - $5n^7 + 2^n + = O(n^7)$ - $n \log^3 n = O(n^2 \log n)$ - $4n^2 + \log n = O(n^3)$ - $n(n+3)/1000 + 10000 \log^4 n = O(n^2)$ #### Ω -notation - Definition. $f(n) = \Omega(g(n))$ if $f(n) \ge cg(n)$ for large n. - Definition. $f(n) = \Omega(g(n))$ if exists constants c, $n_0 > 0$, such that for all $n \ge n_0$, $f(n) \ge cg(n)$ #### Θ-notation • Definition. $f(n) = \Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ ## Asymptotic Notation - f(n) = O(g(n)) if $f(n) \le cg(n)$ for large n. - $f(n) = \Omega(g(n))$ if $f(n) \ge cg(n)$ for large n. - $f(n) = \Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$. - Exercise. Which are true? (logk n is (log n)k) - n log³ n = O(n²) - $2^n + 5n^7 = \Omega(n^3)$ - $n^2(n 5)/5 = \Theta(n^2)$ - 4 $n^{1/100} = \Omega(n)$ - $n^3/300 + 15 \log n = \Theta(n^3)$ - $2^{\log n} = O(n)$ - $\log^2 n + n + 7 = \Omega(\log n)$ #### Asymptotic Notation - · Basic properties. - Any polynomial grows proportional to it's leading term. $$a_0 + a_1 n + a_2 n^2 + \dots + a_d n^d = \Theta(n^d)$$ · All logarithms are asymptotically the same. $$\log_a(n) = \frac{\log_b n}{\log_b a} = \Theta(\log_c(n))$$ for all constants $a, b > 0$ · Logarithms grow slower than any polynomials. $$\log(n) = O(n^d)$$ for all $d > 0$ · Polynomials grow slower than any exponentials. $$n^d = O(r^n)$$ for all $d > 0$ and $r > 1$ ## Typical Running Times for $$i = 1$$ to $n < \theta(1)$ time operation > for $$i = 1$$ to n for $j = 1$ to n $< \theta(1)$ time operation > ## Typical Running Times $$T(n) = \begin{cases} T(n/2) + \Theta(1) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$ $$T(n) = \begin{cases} 2T(n/2) + \Theta(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$ $$T(n) = \begin{cases} 2T(n/2) + \Theta(1) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$ $$T(n) = \begin{cases} T(n/2) + \Theta(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$ # Analysis of Algorithms - · Analysis of algorithms - · Running time - Space - · Asymptotic notation - O, Θ , and Ω -notation. - · Experimental analysis of algorithms ## Experimental Analysis - · Challenge. Can we experimentally estimate the theoretical running time? - Doubling technique. - · Run program and measure time for different input sizes. - Examine the time increase when we double the size of the input. - · Example. - Input size x 2 and time x 4. - · ⇒ Algorithm probably runs in quadratic time. - $T(n) = cn^2$ - $T(2n) = c(2n)^2 = c2^2n^2 = c4n^2$ - T(2n)/T(n) = 4 | n | time | ratio | |--------|------|-------| | 5000 | 0 | - | | 10000 | 0,2 | - | | 20000 | 0,6 | 3 | | 40000 | 2,3 | 3,8 | | 80000 | 9,4 | 4 | | 160000 | 37,8 | 4 | # Analysis of Algorithms - · Analysis of algorithms - · Running time - · Space - · Asymptotic notation - O, Θ , and Ω -notation. - · Experimental analysis of algorithms