Priority Queues

» Priority Queues

- Trees and Heaps

- Representations of Heaps
- Algorithms on Heaps

- Building a Heap

- Heapsort

Philip Bille

Priority Queues

» Priority Queues

Priority Queues

- Priority queues. Maintain dynamic set S supporting the following operations. Each element has
key x.key and satellite data x.data.

- MAX(): return element with largest key.

- EXTRACTMAX(): return and remove element with largest key.
 INCREASEKEY(X, k): set x.key = k. (assume k > x.key)

» INSERT(X): set S =S u {x}

3 56 10 12 20 24

—_—

Priority Queues

- Applications.
- Scheduling
- Shortest paths in graphs (Dijkstra's algorithm)
- Minimum spanning trees in graphs (Prim's algorithm)
- Compression (Huffman's algorithm)

- Challenge. How can we solve problem with current techniques?

Priority Queues

- Solution 1: Linked list. Maintain S in a linked list.

7 >42 |— |18 —| 23 e IS *1 10 156 |— 2

- MAX(): linear search for largest key.
- EXTRACTMAX(): linear search for largest key. Remove and return element.
- INCREASEKEY(X, K): set x.key = k.
- INSERT(X): add element to front of list (assume element does not exist in S beforehand).
- Time.
- MAX and EXTRACTMAX in O(n) time (n = [S]).
 INCREASEKEY and INSERT in O(1) time.
- Space.
- O(n).

Priority Queues

- Solution 2: Sorted linked list. Maintain S in a sorted linked list.

56 *42 | 23— 18 =1 10 "l 7 15 |—

- MAX(): return first element.
EXTRACTMAX(): return and remove first element.
- INCREASEKEY(X, K): set x.key = k. Linear search to move x to correct position.
- INSERT(X): linear search to insert x at correct position.
- Time.
MAX and EXTRACTMAX in O(1) time.

+ INCREASEKEY and INSERT in O(n) time.
- Space.

- O(n).

Priority Queues

linked list O(n) O(n) o(1) O(1) O(n)

sorted linked list O(1) O(1) O(n) O(n) O(n)

- Challenge. Can we do significantly better?

Priority Queues

- Trees and Heaps

Trees

- Rooted trees.
- Nodes (or vertices) connected with edges.
- Connected and acyclic.
- Designated root node.
- Special type of graph.

- Terminology.

- Children, parent, descendant, ancestor, leaves, internal nodes, path,..
- Depth and height.

- Depth of v = length of path from v to root.

- Height of v = length of a longest path from v to descendant leaf.

- Depth of T = height of T = length of longest path from root to a leaf.

Trees

- Binary tree.
- Rooted tree.
- Each node has at most two children called the left child and right child

- Complete binary tree. Binary tree where all levels of tree are full.

- Almost complete binary tree. Complete binary tree with 0 or more rightmost
leaves deleted.

- Lemma. Height af an (almost) complete binary tree with n nodes is ©(log n).
- Proof. See exercises.

Heaps

- Heaps. Almost complete binary tree. All nodes store one element and the tree
satisfies heap-order.

- Heap-order.
- For all nodes v:

- all keys in left subtree and right subtree are < v.key.

- Max-heap vs min-heap.

Priority Queues

- Representations of Heaps

Heap

- Data structure. We need the following navigation operations on a heap.
- PARENT(X): return parent of x.
-+ LEFT(X) : return left child of x.
- RIGHT(X): return right child of x.

- Challenge. How can we represent a heap compactly to support fast navigation?

Heap

- Linked representation. Each node stores
- v.key
* v.parent
- vleft
+ w.right

- PARENT, LEFT, RIGHT by following pointer.

- Time. O(1)
- Space. O(n)

EZEEEN

12

null | null

Heap

- Array representation.
 Array H[O..n]
+ H[0] unused
- H[1..n] stores nodes in level order.

- PARENT(x): return | x/2]
+ LEFT(X) : return 2x.
* RIGHT(X): return 2x + 1

- Time. O(1)

- Space. O(n) N S

Priority Queues

- Algorithms on Heaps

Algorithms on Heaps

- BUBBLEUP(X): @
- If heap order is violated at node x because key is larger than key at parent: >

- Swap x and parent
- Repeat with parent until heap order is satisfied.

- BUBBLEDOWN(X): 0 G

- If heap order is violated at node x because key is smaller than key at left or
right child:

- Swap x and child ¢ with largest key. @
- Repeat with child until heap order is satisfied.

Algorithms on Heaps

- BUBBLEUP(X): @
- If heap order is violated at node x because key is larger than key at parent: >

- Swap x and parent
- Repeat with parent until heap order is satisfied.

- BUBBLEDOWN(X): 0 G

- If heap order is violated at node x because key is smaller than key at left or
right child:

- Swap x and child ¢ with largest key. @
- Repeat with child until heap order is satisfied.

Time.
- BuBBLEUP and BuBBLEDOWN in O(log n) time. w
- How can we use them to implement a priority queue? e e

Priority Queues

Max() INSERT(X)
return H[1] h=hn+1
H[n] = x
EXTRACTMAX() BuBBLEUP(N)
r = H[1]
H[1] = H[n]
h=n-1 INCREASEKEY(X, k)
BuBBLEDOWN(1) H[x] = k
return r BuBBLEUP(X)

Exercise. Trace execution of following sequence
in initially empty heap: 2, 5,7,6,4,E, E

Numbers mean INSERT og E is EXTRACTMAX.
Draw heap after each operation.

Priority Queues

Max() INSERT(X)

return H[1] h=hn+1
H[n] = x

EXTRACTMAX() BuBBLEUP(N)
r = H[1]
H[1] = H[n]
h=n-1 INCREASEKEY(X, k)
BuBBLEDOWN(1) H[x] = k
return r BuBBLEUP(X)

Time.

MAX in O(1) time.
EXTRACTMAX, INCREASEKEY, and INSERT in SN o

O(log n) time. - |31]20]16] 7 [11]13]10] 3| 5[2] 9]2

Priority Queues

linked list O(n) O(n) o(1) o(1) O(n)
sorted linked list o(1) O(1) O(n) O(n) O(n)
heap o(1) O(log n) O(log n) O(log n) O(n)

- Heaps with array data structure is an example of an implicit data structure.

Priority Queues

- Building a Heap

Building a Heap

- Building a heap. Given n integers in a array H[1..n], convert array to a heap.

Building a Heap

- Solution 1: top-down construction
- For all nodes in increasing level order apply BuBBLEUP.

NN EEEEL. A EEEEEEEEEEEEE

- Time.
- For each node of depth d, we use O(d) time.
- 1 node of depth 0, 2 nodes of depth 1, 4 nodes of depth 2, ..., ~n/2 nodes of depth log n.
- = total time is O(n log n)

- Challenge. Can we do better?

Building a Heap

- Solution 2: bottom-up construction
- For all nodes in decreasing level order apply BUBBLEDOWN.

NN EEEEL. A EEEEEEEEEEEEE

- Time.
- For each node of height h we use O(h) time.

- 1 node of height log n, 2 nodes of height log n - 1, ..., n/4 nodes of height 1, n/2 nodes of
height O.

- = total time is O(n) (see exercise)

Priority Queues

- Heapsort

Heapsort

- Sorting. How can we sort an array H[1..n] using a heap?
- Solution.
- Build a heap for H.
- Apply n EXTRACTMAX.
Insert results in the end of array.
- Return H.

- Time.
- Heap construction in O(n) time.
- n EXTRACTMAX in O(nlog n) time.
= total time is O(nlog n).

Heapsort

- Theorem. We can sort an array in O(n log n) time.

- Uses only O(1) extra space.
- In-place sorting algorithm.

Priority Queues

» Priority Queues

- Trees and Heaps

- Representations of Heaps
- Algorithms on Heaps

- Building a Heap

- Heapsort

