Introduction to Graphs

- Undirected Graphs
- Representation
- Depth-First Search
-+ Connected Components
- Breadth-First Search
- Bipartite Graphs

Philip Bille

Introduction to Graphs

- Undirected Graphs

Undirected graphs

- Undirected graph. Set of vertices pairwise joined by edges.

vertex ——

- Why graphs?
- Models many natural problems from many different areas.
- Thousands of practical applications.
- Hundreds of well-known graph algorithms.

Visualizing the Internet

http://en.wikipedia.org/wiki/Opte_Project

Visualizing Friendships on Facelbook

facebook

"Visualizing friendships", Paul Butler

London Metro

Epping
Chesham < Watford Junction !
cnattonce, Theydon Bois §
Latimer Watford High Street High Barnet o Cockfoster ebden
Watford O i Cockfosters Deba
=Bushey Totteridge & Whetstone @) oskwood Loughton.
Croxtey
A Carpenders Park (3) oy Buckhurst Hil
Rickmansworth’ Moor Park w T Roding. Grange
Hateh End Ml il East 5 valey il
= West Ruistp O Headstone Lane { Edgware Chigwell
. @ stanmoret) S Bounds Green] it
tilingson Trid . 2 Harroy Burnt Oak e Wood Greend Woodford (3)
ip Manor Pinner Wealdstone &) L Canons Park /o0d Green o
Uxbridg Ickenham East Finchley Harringay ‘South Woodford:
e Eastote North Harrow Kerton L cusansbury Turmpike tone GHRTNEY sotinbice]
=Harow Northwick | Preston & Highgate Crouch South Tottenham G
orthectit " Fark Road Kingsbury Newbury Park
Ruislip Seven Blackhorse
GRustip Rayners Lane' — Archway Manor House: Sisters = Road e,
Harrow South Kenten 1 Goldors Grgen Hampstead oo Upper Holloway .
South Harrow 4 North Wembley Ham Heatn (@ ———— ottenham harms Wanstead Gants
= South Ruistip Y Wembley lampstead Tufnell Park Arsenal, isury [Contral = onstone il = Upminster
= Wembley Central i "
8 v Finchley Road _— Holloway Road, Walthamstow Leyton Leytonstone Upminster Bridge,
Sudbury Hill Stonebridge Park Willesden Green & Frognal, Belsize Park Town West Kentish Town == Queen’s Road Midland Road High Road Hornchurch,
ize Highbury &
atesden ot Caladorian Rond,
Nortott s P e A slhaion s posen corton e
Sudbury Town Willesden Junction Rise Park \West Hampstead 2= el Fal Cil:dﬁ: Hackney == Stratford East, Elm Park
oa Intemationsi Wanstead Park
T Finchley Road o Catedonian| Central
Kensal Green My ‘s Y . ‘Teamden Town JRoadd Canonbury. e
wiss Cottage msbury . agenham
Queen’s Park Kilburn South Mornington, Dalston J i Stratford % Heathway
1'Q HighRoad Hampstead st John's Wood Crescent’ N Homerton _ Hackney Becontree
King’s Cross Wick Woodgrange Park
Kilburn Park N st. Pancras Haggerston Upney
iguare Great atford
Maid Vale priangons S vriebors N, o8 e e foins=
Warwick Avenue et Ptree 8
. udding
Royal Ok Anget o S | @yaser East Ham
¢ Old Street = ethnal o B oac
Westbourne Park; e Warrn sueet{ Euston Sren. Mile End oton park
Wosd Farrngdon ow Roa
Park Royal. Regent's Park sdgn liverpool Sl e Plaistow
Ladbrokecrove | Russell sieer) Shoredth @
Latimer Road oo, Square Barbican PBow Church !;;-NB‘I:\Z. West Ham 2=
lor aling " ioodge, loorgate:
North Ealin. East Whie)\ Shepherds Notting | Lancaster Bond | Oxtord Street Chancery Hoormate @ evons road
Acon City Bush = HilGate Gate street A Circus Lane . Stepney Green €2) Devons Roax stortane
St. Paul's igate
N North Holland Gusenaway Marole Tomernom Holborn o st B ntechapel @) Langdon Park
\cton \cton Park et -ourt Roac Py nning
Ac AN Wood Lane Covent Garden Adgate O ausains Conieg
oya
Acton Central Keungeon Srecn Park Lei 52l westtery [plackwat Vicioria
cton Central ain a use for ExCel
Eating Cor it = Park Piccadil 2 Cannon street y ustom House forExcel
ing Common s orket | s Hyde Park Corne, <adily e P mehpuse o e — e Regent
uth Acton lympia) Jehtsbri Mansion House i oyl Docks
Goldhawk Road yme! Knlghtsbridge, roneioes | Tower Wapping @ West AN Royal Albert
D 2=Charing & = Blackfriars, Gateway India QuayT
o Glagcester St James’ Cross] River Thames ™~ - West Beckton Park
Acton Town Hammersmith @ 'Gour Nosd e | s eme rompie J2 § P . Wt om
jctora | Par]
South Eatng / v Rttt d] | feanay whart || | Crprus
. T Emirate
Northfields, " ‘Westminster Embankment T&= mirates
chiswick (ffTurnham Stamford Ravenscourt west|| f(Ears South Sloane e (— ‘Canada North | Emirates
Park F Brook - Park Kensington 5 Kensington Square L - ¥ ermondsey “Water n Greenwich piiell Pontogn Dock
. Green' gton || J Court gt p v eridge FHeron Quays € ich peninsula o
= West Brompton @) watertoo - London ac
i e Surey Quays { South Quay €) City Aport 4 Beckton
) Gunnersbury Crossharbour €) King George V.
pimiico Southwark L
T ousion Hounslow East ’ Fulham Broadway (&) sense Gy
st Hounstow Central (8) Kew Gardens Parsons Greend Imperial
Wharf < Lambetn Borough tstand Gordens €)| |
Hatton Cross (&) Richmond == Putney Bridge o J ferh
row y & = Woolwich
E Terminats 123 Ocuysoktor s
crminas b East Putney 4 ueens Road Maritime Greenwich &
ueens Roa
Heathrow Vaushalt Elephant & Castle = ashisd i
4+ éumm.u Southfields (@) > Dnewcrossw @) Greenwicn =
= Clspham Garex
— Wimbledon Park Sunction .
Wandsworth 2ty kennington oo Brock
et s o Wimbledon &) Road * L “ @ verson rosa
Stockwell H Honor Oak park
Clapham High Street. Honor Oak Par O Levisham =
Denmark Hil =
& Forest il
Clapham Comman, » @ sydentam =
arixton =
Clapham South, s
= satham
Anertey
F
Tooting Bec =Crystal Patace Norwood Junction ==
Tooting Broadway West Croydon =
Colliers Wood
South Wimbledon This iagram s an evlutio of theorginal deslgn concelved In 1931 by Harry Beck
Corectatime of going o pie Decembar 015
© Transport for London . Morden . o

London metro, London Transpor

t

Protein Interaction Networks

: SN AT
i 4’&\\\

S]
RO LT
=W ‘\\\7.\\% AT
o I¢

Protein-protein interaktionsnetverk,
Jeong et al, Nature Review | Genetics

Applications of Graphs

Graph Vertices Edges
communication computers cables
transport intersections roads
transport airports flight routes
games position valid move
neural network neuron synapses
financial network stocks transactions
circuit logical gates connections
food chain species predator-prey
molecule atom bindings

Terminology

- Undirected graph. G = (V, E)
- V = set of vertices
- E = set of edges (each edge is a pair of vertices)
* n=1[V], m=E]
- Path. Sequence of vertices connected by edges.
- Cycle. Path starting and ending at the same vertex.
- Degree. deg(v) = the number of neighbors of v, or edges incident to v.
- Connectivity. A pair of vertices are connected if there is a path between them
V=1{0,1,2,..,12}
={(0,1), (0,2) (0,4),(2,3),..., (11,12)}

/cycle

deg(2)

path from 0 to 3

Undirected Graphs

- Lemma. 3}, deg(v) =2m.

- Proof. How many times is each edge counted in the sum?

0

Sy INC=0Clo
P BN

4

Algoritmic Problems on Graphs

- Path. Is there a path connecting s and t?
- Shortest path. What is the shortest path connecting s and t?
- Longest path. What is the longest path connecting s and t?

- Cycle. Is there a cycle in the graph?
- Euler tour. Is there a cycle that uses each edge exactly once?
- Hamilton cycle. Is there a cycle that uses each vertex exactly once?

- Connectivity. Are all pairs of vertices connected?
- Minimum spanning tree. What is the best way of connecting all vertices?
- Biconnectivity. Is there a vertex whose removal would cause the graph to be disconnected?

- Planarity. Is it possible to draw the graph in the plane without edges crossing?
- Graph isomorphism. Do these sets of vertices and edges represent the same graph?

Introduction to Graphs

- Representation

Representation

- Graph G with n vertices and m edges.
- Representation. We need the following operations on graphs.
- ADJACENT(v, u): determine if u and v are neighbors.
- NEIGHBORS(V): return all neighbors of v.
- INSERT(v, u): add the edge (v, u) to G (unless it is already there).

Qe
P G

0

4

Adjacency Matrix

Ali,j] = 1 ifi and j are neighbors, 0 otherwise

Space. O(n?)

2D n X n array A.
Time.

Graph G with n vertices and m edges.

Adjacency matrix.

ololo]lo|lo|lo|lo|lo]lo]l~]|~]|~]|O
o|lolo]lo|lo|lo|lo|olo]~]|o|o]| -
o|lololo|lo|lo|lo|lo]lo]~|olo]| -
o|lolo]lo|lo|lo|lo|lololol~]|~]|+
olo|lolo|lo]lo]~]|o|lo]lolo]lo|o
o|lolo]lo|lo]lo|+~|olo]lololo]|o
o|lololo|lo|lo|lo|~]~]o]o]lo]|o
olo]lr]r]|r]|o|lo|l|o]lo]o]lo|lo]|o
~|lolo|~]|o]r]|o]|lo|lo]lo]lo]o]o
olo]l~]|o]|r]+~|o|o]lo]olo|lo|o
—|lolo|~]|o]r~|o|lo|lo]lo]lo]o]o
—|olo|lo]lo|lo|lo|lolololo]lo]o
o|l~]~]|o]|r]|o|lo|o]lo]o]lolo|o
o al
O~ AN O < 1 © ~ 0w o = T =X
omu
-—
—~
-
@)
)
£ E
r =
—~
n_._mn
N
z O
° £
C w
© o
> 3
L m
MH
S O
A W

Adjacency List

- Graph G with n vertices and m edges.
- Adjacency list.

-+ Array AJ0..n-1].

- AJi] is a linked list of all neighbors of .
. Space. O(n +), _,, deg(v)) = O(n + m)

- Time.
- ADJACENT, NEIGHBOURS, INSERT O(deg(v)) time.

veV

0
1
2
3
4
5
6
7
8
9
10
11
12

T
B
!

i

INNN

S
!

:

4
:
i

N

HE

-
i
.

Adjacency List

n=4
adj = [[] for i in range(n)]
adj[0].append(1)
adj[1].append(0)
adj[0].append(3)
adj[3].append(0)
adj[1].append(2)
adj[2].append(1)
adj[1].append(3
adj[3].append(1
adj[2].append(3
adj[3].append(2

)
)
)
)

[[1, 31, [0, 2, 3], [1, 3], [0, 1, 2]]

Representation

adjacency matrix 0(1) O(n) O(1) O(n?)

adjacency list O(deg(v)) O(deg(v)) O(deg(v)) O(n+m)

- Real world graphs are often sparse.

Introduction to Graphs

- Depth-First Search
-+ Connected Components

Depth-First Search

- Algorithm for systematically visiting all vertices and edges.
- Depth first search from vertex s.
- Unmark all vertices and visit s. °
- Visit vertex v:
- Mark v.

- Visit all unmarked neighbours of v recursively.

- Intuition.
- Explore from s in some direction, until we read dead end.
- Backtrack to the last position with unexplored edges.
- Repeat.

- Discovery time. First time a vertex is visited.
- Finish time. Last time a vertex is visited.

Depth-First Search

DFS(s)
time = 0
DFS-vISIT(S)

DFS-vISIT(V)
v.d = time++

mark v
for each unmarked neighbor u
u.m= vV

DFS-vIsiT(u)
v.f = time++

- Time. (on adjacency list representation)
- Recursion? once per vertex.
- O(deg(v)) time spent on vertex v.
- = total O(n + 2, _, deg(v)) = O(n + m) time.

- Only visits vertices connected to s.

Depth-First Search

visited = [False for i in range(n)]

def dfs(s):
if (visited[s]):
return
visited[s] = True
print(s)
for u in adj[s]:
dfs(u)

dfs(0)

0
1
2
3

Flood Fill

Flood fill. Chance the color of a connected area of green pixels.

Algorithm.

‘@60 Tux Paint)

00 @agid
P/ =) o ot
aint ' Stamp RambowS;é‘rkles
5 - o 1

Lines 'Shapes Mirror " Flip
Abc —
Text \Magic Blur " Block
& /b o\
Undo = Redo Negative' Fade
DD .0
Eraser ' New Chalk ' Drip
éen ;ave Thick '* Th

éﬁ ZE yd Fill

€ood® ()

ﬁ Click in the picture to fill that area with color.

Build a grid graph and run DFS.

Vertex: pixel.
Edge: between neighboring pixels of same color.

Area: connected component

Connected Components

- Definition. A connected component is a maximal subset of connected vertices.

- How to find all connected components?
- Algorithm.
- Unmark all vertices.
- While there is an unmarked vertex:
- Chose an unmarked vertex v, run DFS from v.
- Time. O(n + m).

Introduction to Graphs

- Breadth-First Search
- Bipartite Graphs

Breadth-First Search

- Breadth first search from s.
- Unmark all vertices and initialize queue Q.
- Mark s and Q.ENQUEUE(s). s
- While Q is not empty:
- v = Q.DEQUEUE().
- For each unmarked neighbor u of v
- Mark u.
- Q.ENQUEUE(u).

+ Intuition.
- Explore, starting from s, in all directions - in increasing distance from s.

- Shortest paths from s.
- Distance to s in BFS tree = shortest distance to s in the original graph.

Shortest Paths

- Lemma. BFS finds the length of the shortest path from s to all other vertices.
- Intuition.

- BFS assigns vertices to layers. Layer i contains all vertices of distance i to s.

L1 Lo
Lo

- What does each layer contain?
* Lo: {s}

- L4 all neighbours of Lo.

- Lo all neighbours of L1 that are not neighbors of Lo
- Ls: all neighbours of L> that neither are neighbors of Lo nor L.

- L. all neighbours of Li-1 that are not neighbors of any L;for j < i-1
- = all vertices of distance i from s.

Breadth-First Search

BFS(s)
mark s
s.d =0
Q.ENQUEUE(S)
repeat until Q.ISEMPTY()
v = Q.DEQUEUE(Q)
for each unmarked neighbor u

mark u
u.d =v.d + 1
Uu.m= Vv

Q. ENQUEUECuU)

- Time. (on adjacency list representation)

- Each vertex is visited at most once.

- O(deg(v)) time spent on vertex v.

- = total O(n + 2, _, deg(v)) = O(n + m) time.

- Only vertices connected to s are visited.

Breadth-First Search

from collections import deque

q = deque()

visited = [False for i in range(n)]
distance = [-1 for i in range(n)]

visited[0] = True
distance[0] =0
g.append(0)
while q:
S = g.popleft()
print(s)
for u in adj[s]:
if (visited[u]):
continue
visited[u] = True
distance[u] = distance[s]+1
g.append(u)

0
1
3
2

Bipartite Graphs

- Definition. A graph is bipartite if and only if all vertices can be colored red and blue such that
every edge has exactly one red endpoint and one blue endpoint.

- Equivalent definition. A graph is bipartite if and only if its vertices can be partitioned into two
sets V1 and V2 such that all edges go between V1 and V.

- Application.
- Scheduling, matching, assigning clients to servers, assigning jobs to machines, assigning
students to advisors/labs, ...

- Many graph problems are easier on bipartite graphs.

Bipartite Graphs

- Challenge. Given a graph G, determine whether G is bipartite.

Bipartite Graphs

- Lemma. A graph G is bipartite if and only if all cycles in G have even length.
- Proof. =

- If G is bipartite, all cycles start and end on the same side.

Bipartite Graphs

- Lemma. A graph G is bipartite if and only if all cycles in G have even length.
+ Proof. =

- Choose a vertex v and consider BFS layers Lo, L1, ..., L«

- All cycles have even length

- = There is no edge between vertices of the same layer

- = We can colors layers with alternating red and blue colors.
- = G is bipartite.

Bipartite Graphs

- Algorithm.
- Run BFS on G.

- For each edge in G, check if it's endpoints
are in the same layer.

- Time.
* O(n + m)

Lo

Lo

L1

L1

Lo

Lo

Ls

L3

Graph Algorithms

Depth first search O(n + m) O(n + m)
Breadth first search O(n + m) O(n + m)
Connected components O(n+m) O(nh + m)
Bipartite O(n + m) O(n + m)

- All on the adjacency list representation.

Introduction to Graphs

- Undirected Graphs
- Representation
- Depth-First Search
-+ Connected Components
- Breadth-First Search
- Bipartite Graphs

