
Network Flows

Inge Li Gørtz

CLRS Chapter 26.0-26.2

Network Flow

• Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 1

2

2

2
2

1

2
21s t

Network Flow

• Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road.

• Example 1:

• Solution 1: 4 trucks

• Solution 2: 5 trucks

• Example 2:

• 5 trucks (need to cross river).

1

2

2

2
2

1

2
21s t2

2 2

2
2 2

1
1

1

1

1

2

2

2

2
2

2

2
21s t

• Network flow:

• graph G=(V,E).

• Special vertices s (source) and t (sink).

• s has no edges in and t has no edges out.

• Every edge (e) has a (integer) capacity c(e) ≥ 0.

• Flow:

• capacity constraint: every edge e has a flow 0 ≤ f(e) ≤ c(e).

• flow conservation: for all u ≠ s, t: flow into u equals flow out of u.

• Value of flow f is the sum of flows out of s:

• Maximum flow problem: find s-t flow of maximum value

Network Flow

1

2

2

2
2

1

2
21s t

X

v:(v,u)2E

f(v, u) =
X

v:(u,v)2E

f(u, v) u
2

1
5

2 0
3

3

v(f) = ∑
v:(s,v)∈E

f(e) = f out(s)

Algorithm

• Find path where we can send more flow.

1

2

2

2
2

1

2
21s t2

2 2

2
2 2

Algorithm

• Find path where we can send more flow.

• Send flow back (cancel flow).
1

2

2

2
2

1

2
21s t2

2 2

2
2 2

1

2

2

2
2

1

2
21s t2

1 2

2
1 2

1

1

1

Augmenting Paths

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

1

2

2

2
2

1

2
21s t1/ 2/

2/ 2/ 2/

1/
1/

1/

1/

1/

1/2/

+δ +δ +δ-δ -δ -δ

Augmenting Paths

• Augmenting path (definition different than in CLRS): s-t path where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck℗.

• Ford-Fulkerson:

• Find augmenting path, use it

• Find augmenting path, use it

• Find augmenting path, use it

• ………………….

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0
+δ +δ +δ-δ -δ -δ

Ford Fulkerson

• Augmenting path: s-t path P where

• forward edges have leftover capacity

• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

8 3

8

4 2
9

s t

+δ +δ +δ-δ -δ -δ

2 2

2

6 55/ 5/ 5/

3/ 3/

4/ 4/

5/
2/

2/

3/

6/

Analysis of Ford-Fulkerson

• Integral capacities implies theres is a maximum flow where all flow values f(e)
are integers.

• Number of iterations:

• Always increment flow by at least 1: #iterations ≤ max flow value f*

• Time for one iteration:

• Can find augmenting path in linear time: One iteration takes O(m) time.

• Total running time = O(|f*| m).

Residual networks

1

2

2

2
2

2
21s t

1

1

2

2

2
2

1

2 2
1s t0

0

0

0
00

0 0

0

Residual networks

1

2

2

2
2

2
21s t

1

1

2

2

2
2

1

2 2
1s t0

0

0

0
00

0 0

0

2/ 2/
2/

Residual networks

1

2

2

2
2

2
21s t

1

1

0

2

0
0

1

2 2
1s t2

0

0

2
02

0 0

0

2/ 2/
2/

Residual networks

1

2

2

2
2

2
21s t

1

1

0

2

0
0

1

2 2
1s t2

0

0

2
02

0 0

0

2/ 2/
2/

1/

Residual networks

1

2

2

2
2

2
21s t

1

1

0

2

0
0

1

2 2
1s t2

0

0

2
02

0 0

0

2/ 2/

1/

1/
1/

Residual networks

1

2

2

2
2

2
21s t

1

0

0

2

1
0

1

2 1
0s t2

1

1

1
12

0 0

0

2/ 2/
2/

1/
1/

1/
1/

1/
1/

1/
1/

Residual networks

1

2

2

2
2

2
21s t

1

0

0

2

1
0

1

2 1
0s t2

1

1

1
12

0 0

0

2/ 2/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Capacity of cut: total capacity of edges going from S to T.

s t

S T

2

2

2

2
2

2

2
21s t

c(S,T) = 5

c(S,T) = 8

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
21s t

2/

1/
1/ 2/

2/
1/

2/

1/

1/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
21s t

f(S,T) = 5c(S,T) = 9
2/

1/
1/ 2/

2/
1/

2/

1/

1/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
21s t f(S,T) = 6 - 1 = 5

c(S,T) = 8
2/

1/
1/ 2/

2/
1/

2/

1/

1/

2/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Flow across cut: = flow from S to T minus flow from T to S.

s t

S T

2

2

2

2
2

2

2
21s t

f(S,T) = 5c(S,T) = 5
2/

1/
1/ 2/

2/
1/

1/

1/

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Capacity of cut: total capacity of edges going from S to T.

• Flow across cut = flow from S to T minus flow from T to S.

• Flow across cut: f4 + f5 - f6 = ?

• f2 + f4 + f5 - f1 = 0

• f3 - f2 - f6 = 0

• f1 - f3 = |f|

• (f2 + f4 - f1 + f5) + (f3 - f2 - f6) + (f1 - f3) = |f|

• f4 + f5 - f6 = |f|

• Net flow across cut is |f| for all cuts => net flow out of s = net flow into t.

s t

S T

f1

f3

f4

f6
f5s f2

x xx xx x

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Capacity of cut: total capacity of edges going from S to T.

• Flow across cut = flow from S to T minus flow from T to S.

• Net flow across cut is |f| for all cuts => net flow out of s = net flow into t.

• |f| ≤ c(S,T):

• |f| = f4 + f5 - f6 ≤ f4 + f5 ≤ c4 + c5 = c(S,T)

s t

S T

f1

f3

f4

f6
f5s f2

s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.

• Capacity of cut: total capacity of edges going from S to T.

• Flow across cut = flow from S to T minus flow from T to S.

• |f| ≤ c(S,T).

• Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a

maximum flow and (S,T) is a minimum cut.

• Let f* be the maximum flow and the (S*,T*) minimum cut:

• |f| ≤ |f*| ≤ c(S*,T*) ≤ c(S,T).

• Since |f| = c(S,T) this implies |f| = |f*| and c(S,T) = c(S*,T*).

s t

S T

Finding minimum cuts

• Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

• When no augmenting s-t path:

• Let S be all vertices to which there exists an augmenting path from s.

2

2

2

2
2

2

2
21s t1/ 2/

2/ 2/ 2/

1/
1/

1/

1/

1/

1/2/

Use of Max-flow min-cut theorem

• There is no augmenting path <=> f is a maximum flow.

• f maximum flow => no augmenting path:

• Show that exists augmenting path => f not maximum flow.

• no augmenting path => f maximum flow

• no augmenting path => exists cut (S,T) where |f| = c(S,T):

• Let S be all vertices to which there exists an augmenting path from s.

• t not in S (since there is no augmenting s-t path).

• Edges from S to T: f1 = c1 and f2 = c2.

• Edges from T to S: f3 = 0.

• => |f| = f1 + f2 - f3 = f1 + f2 = c1 + c2 = c(S,T).

• => f a maximum flow and (S,T) a minimum cut.

f1

f3

f2s t

Finding minimum cuts

8 3

8

4 2
9

s t

2 2

2

6 55/ 3/ 5/

5/ 3/

4/ 6/

2/

2/

• Use Ford-Fulkerson to find a max-flow (finding augmenting paths).

• When no augmenting s-t path:

• Let S be all vertices to which there exists an augmenting path from s.

• Remember:

• All forward edges in the minimum cut are “full” (flow = capacity)

• All backwards edges in minimum cut have 0 flow.

Removing assumptions

• Edges into s and out of t:

• Capacities not integers.

v(f) = f out(s) − f in(s)

Network Flow

• Multiple sources and sinks:

