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Network Flow

« Truck company: Wants to send as many trucks as possible from s to t. Limit
of number of trucks on each road. 1




Network Flow

« Truck company: Wants to send as many trucks as pOSSIb|e from s to t. Limit
of number of trucks on each road.

« Example 1:

« Solution 1: 4 trucks

« Solution 2: 5 trucks

« Example 2:

* 5 trucks (need to cross river).




Network Flow

* Network flow:
- graph G=(V,E).

« Special vertices s (source) and t (sink).

* s has no edges in and t has no edges out.

- Every edge (e) has a (integer) capacity c(e) = O.
* Flow: 1
« capacity constraint: every edge e has a flow 0 < f(e) < c(e).
* flow conservation: for all u # s, t: flow into u equals flow out of u.

Z f(U, u) — Z f(uv U)

vi(v,u)eEE vi(u,v)eEE

« Value of flow f is the sum of flows out of s:

()= ), fle)=f"Cs)

vi(s,v)EE

« Maximum flow problem: find s-t flow of maximum value



Algorithm

* Find path where we can send more flow.




Algorithm

* Find path where we can send more flow.

- Send flow back (cancel flow).




Augmenting Paths

« Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow

S @ +6 ° -6 ° +6 ° +6 ° -6 -6 ®
el () < P> a A <
f1 < C1 fo>0 fs< C3 fa< Ca fs>0 fe> 0

- Can add extra flow: min(c1 - f1, f2, c3 - 3, Ca - f4, f5, fs) = O = bottleneck(P).




Augmenting Paths

- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -5
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f1 < c1 fo>0 fa< cs fa< ca fs> 0 fe> 0

« Can add extra flow: min(c1 - f1, f2, c3 - f3, Ca - f4, fs5, fg) = 6 = bottleneck®.

 Ford-Fulkerson:
- Find augmenting path, use it
« Find augmenting path, use it

« Find augmenting path, use it



Ford Fulkerson

« Augmenting path: s-t path P where
- forward edges have leftover capacity

- backwards edges have positive flow
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Analysis of Ford-Fulkerson

* Integral capacities implies theres is a maximum flow where all flow values f(e)
are integers.

* Number of iterations:
- Always increment flow by at least 1: #iterations < max flow value f*
« Time for one iteration:
+ Can find augmenting path in linear time: One iteration takes O(m) time.

« Total running time = O(|f*| m).



Residual networks
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Residual networks




s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandt e T.
S T

°
-

- Capacity of cut: total capacity of edges going from Sto T.




s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.
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s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

cS,T) =9 fS5T)=5




s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

1/2




s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandt e T.
S T

* Flow across cut: = flow from S to T minus flow from T to S.

cS,T)=56 fST)=5




s-t Cuts

Cut: Partition of vertices into Sand T, suchthatse Sandt e T.
S

Capacity of cut: total capacity of edges going from Sto T.
Flow across cut = flow from S to T minus flow from T to S.

Flow across cut: fa+ fs- fg = ? f4

e fo+fy+fs-f1=0 f ’O
» fa-fo-fe=10 S fo §

. f1-f3 = | fy

« (fo+ fa-fa+ fs) + (fa- fo - fo) + (k1 - ) = |f]

N T

Net flow across cut is [f| for all cuts => net flow out of s = net flow into t.



s-t Cuts

« Cut: Partition of vertices into Sand T, suchthatse Sandt e T.
S T

- Capacity of cut: total capacity of edges going from Sto T.
* Flow across cut = flow from S to T minus flow from T to S.
 Net flow across cut is [f| for all cuts => net flow out of s = net flow into t.
fl < c(S,T):

* |fl=fa+fs-fo<fa+fs <ca+cs=c(S,T)




s-t Cuts

« Cut: Partition of verticesinto Sand T, suchthats e Sandt e T.
S T

- Capacity of cut: total capacity of edges going from Sto T.
 Flow across cut = flow from S to T minus flow from T to S.
fl < c(S,T).

« Suppose we have found flow f and cut (S,T) such that |f| = ¢(S,T). Thenfis a
maximum flow and (S,T) is a minimum cut.

* Let f* be the maximum flow and the (S*,T*) minimum cut:
fl < [f] < c(S*,T*) < c(S,T).
« Since [f| = ¢(S,T) this implies [f| = |f*| and ¢(S,T) = ¢(S*,T%).




Finding minimum cuts

« Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
« When no augmenting s-t path:

« Let S be all vertices to which there exists an augmenting path from s.




Use of Max-flow min-cut theorem

« There is no augmenting path <=> f is a maximum flow.
« f maximum flow => no augmenting path:
« Show that exists augmenting path => f not maximum flow.
* no augmenting path => f maximum flow
« no augmenting path => exists cut (S,T) where |f| = c(S,T):
 Let S be all vertices to which there exists an augmenting path from s.
« tnot in S (since there is no augmenting s-t path).
- Edges from Sto T: f1 = ¢1 and f2 = co.
- Edges from T to S: f3 = 0.
« =>|f|=fi +fo-fa="f1 + fo=c1+ co=c(S,T).
- =>f a maximum flow and (S,T) a minimum cut.

f1

f3




Finding minimum cuts

« Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
« When no augmenting s-t path:

« Let S be all vertices to which there exists an augmenting path from s.
« Remember:

- All forward edges in the minimum cut are “full” (flow = capacity)

 All backwards edges in minimum cut have O flow.




Removing assumptions

- Edges into s and out of t:

v(f) = f(s) = f(s)

- Capacities not integers.



Network Flow

« Multiple sources and sinks:




