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Network Flow

• Truck company: Wants to send as many trucks as possible from s to t. Limit 
of number of trucks on each road. 1
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Network Flow

• Truck company: Wants to send as many trucks as possible from s to t. Limit 
of number of trucks on each road.


• Example 1: 


• Solution 1: 4 trucks 


• Solution 2: 5 trucks


• Example 2: 


• 5 trucks (need to cross river).
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• Network flow:


• graph G=(V,E). 


• Special vertices s (source) and t (sink).


• s has no edges in and t has no edges out.


• Every edge (e) has a (integer) capacity c(e) ≥ 0.


• Flow: 


• capacity constraint: every edge e has a flow 0 ≤ f(e) ≤ c(e).


• flow conservation: for all u ≠ s, t: flow into u equals flow out of u.


• Value of flow f is the sum of flows out of s:


• Maximum flow problem: find s-t flow of maximum value 

Network Flow
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f(e) = f out(s)



Algorithm

• Find path where we can send more flow.
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Algorithm

• Find path where we can send more flow.


• Send flow back (cancel flow).
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Augmenting Paths

• Augmenting path: s-t path P where


• forward edges have leftover capacity


• backwards edges have positive flow


• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck(P).

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0
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Augmenting Paths

• Augmenting path (definition different than in CLRS): s-t path where


• forward edges have leftover capacity


• backwards edges have positive flow


• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ = bottleneck℗.


• Ford-Fulkerson:


• Find augmenting path, use it


• Find augmenting path, use it


• Find augmenting path, use it


• ………………….

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0
+δ +δ +δ-δ -δ -δ



Ford Fulkerson

• Augmenting path: s-t path P where


• forward edges have leftover capacity


• backwards edges have positive flow

s tf1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0
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Analysis of Ford-Fulkerson

• Integral capacities implies theres is a maximum flow where all flow values f(e) 
are integers.


• Number of iterations:


• Always increment flow by at least 1: #iterations ≤ max flow value f*


• Time for one iteration:


• Can find augmenting path in linear time: One iteration takes O(m) time.


• Total running time = O(|f*| m).



Residual networks
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Residual networks
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Residual networks
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Residual networks
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1/

Residual networks
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Residual networks
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Residual networks
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s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.


• Capacity of cut: total capacity of edges going from S to T.
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s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.


• Flow across cut: = flow from S to T minus flow from T to S.
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s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.


• Flow across cut: = flow from S to T minus flow from T to S.
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s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.


• Flow across cut: = flow from S to T minus flow from T to S.
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s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.


• Flow across cut: = flow from S to T minus flow from T to S.
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s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.


• Capacity of cut: total capacity of edges going from S to T. 

• Flow across cut = flow from S to T minus flow from T to S.


• Flow across cut: f4 + f5 - f6 = ?


• f2 + f4 + f5 - f1 = 0

• f3 - f2 - f6 = 0


• f1 - f3  = |f|


• (f2 + f4 - f1 + f5) + (f3 - f2 - f6) + (f1 - f3) = |f|


• f4 + f5 - f6 = |f|

• Net flow across cut is |f| for all cuts => net flow out of s = net flow into t.
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s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.


• Capacity of cut: total capacity of edges going from S to T. 


• Flow across cut = flow from S to T minus flow from T to S.


• Net flow across cut is |f| for all cuts => net flow out of s = net flow into t.


• |f| ≤ c(S,T):


• |f| = f4 + f5 - f6 ≤ f4 + f5  ≤ c4 + c5 = c(S,T) 
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s-t Cuts

• Cut: Partition of vertices into S and T, such that s ∈ S and t ∈ T.


• Capacity of cut: total capacity of edges going from S to T. 

• Flow across cut = flow from S to T minus flow from T to S.


• |f| ≤ c(S,T).

• Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a 

maximum flow and (S,T) is a minimum cut.


• Let f* be the maximum flow and the (S*,T*) minimum cut:

• |f| ≤ |f*| ≤ c(S*,T*) ≤ c(S,T). 


• Since |f| = c(S,T) this implies |f| = |f*| and c(S,T) = c(S*,T*).
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Finding minimum cuts

• Use Ford-Fulkerson to find a max-flow (finding augmenting paths).


• When no augmenting s-t path: 


• Let S be all vertices to which there exists an augmenting path from s. 
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Use of Max-flow min-cut theorem

• There is no augmenting path <=> f is a maximum flow.


• f maximum flow => no augmenting path: 

• Show that exists augmenting path => f not maximum flow.


• no augmenting path => f maximum flow


• no augmenting path => exists cut (S,T) where |f| = c(S,T):

• Let S be all vertices to which there exists an augmenting path from s. 


• t not in S (since there is no augmenting s-t path).


• Edges from S to T: f1 = c1 and f2 = c2.

• Edges from T to S: f3 = 0.


• => |f| = f1 + f2 - f3 = f1 + f2 = c1 + c2 = c(S,T).


• => f a maximum flow and (S,T) a minimum cut.
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Finding minimum cuts
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• Use Ford-Fulkerson to find a max-flow (finding augmenting paths).


• When no augmenting s-t path: 


• Let S be all vertices to which there exists an augmenting path from s. 


• Remember:


• All forward edges in the minimum cut are “full” (flow = capacity)


• All backwards edges in minimum cut have 0 flow.



Removing assumptions

• Edges into s and out of t:


• Capacities not integers.

v( f ) = f out(s) − f in(s)



Network Flow

• Multiple sources and sinks:


