
Network Flow II
Inge Li Gørtz

KT 7.3, 7.5, 7.6
1

Network Flow

• Network flow:

• graph G=(V,E).

• Special vertices s (source) and t (sink).

• Every edge e has a capacity c(e) ≥ 0.

• Flow:

• capacity constraint: every edge e has a flow 0 ≤ f(e) ≤ c(e).

• flow conservation: for all u ≠ s, t: flow into u equals flow out of u.

• Value of flow f is the sum of flows out of s minus sum of flows into s:

• Maximum flow problem: find s-t flow of maximum value

1

2

2

2
2

1

2
21s t

X

v:(v,u)2E

f(v, u) =
X

v:(u,v)2E

f(u, v) u

v(f) = ∑
v:(s,v)∈E

f(e) − ∑
v:(v,s)∈E

f(e) = f out(s) − f in(s)

2

Today

• Applications

• Finding good augmenting paths. Edmonds-Karp and scaling algorithm.

3

• Find (any) augmenting path and use it.

• Augmenting path (definition different than in CLRS): s-t path where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ

• To find augmenting path use DFS or BFS:

Ford-Fulkerson

s t
f1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

+δ +δ +δ-δ -δ -δ

s

4
4 4

4
9

4
3

82 5

6

6
t

4

• Integral capacities:

• Each augmenting path increases flow with at least 1.

• At most v(f) iterations

• Find augmenting path via DFS/BFS: O(m)

• Total running time: O(v(f) m)

• Lemma. If all the capacities are integers, then there is a maximum flow where the
flow on every edge is an integer.

• Bad example for Ford-Fulkerson:

Ford-Fulkerson

s

1.000.000

1.000.000

1.000.000

1.000.000

1

1/

1/

1/1/

1/

0/1/

2/

2/2/

2/

0/

5

• Find shortest augmenting path and use it.

• Augmenting path (definition different than in CLRS): s-t path where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ

• To find augmenting path use BFS:

Edmonds-Karp

s t
f1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

+δ +δ +δ-δ -δ -δ

s

4
4 4

4
9

4
3

82 5

6

6
t

3/ 3/

6

• Find shortest augmenting path and use it.

• Augmenting path (definition different than in CLRS): s-t path where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ

• To find augmenting path use BFS:

Edmonds-Karp

s t
f1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

+δ +δ +δ-δ -δ -δ

s

4
4 4

4
3/9

4
3/3

82 5

6

6

7

• Find shortest augmenting path and use it.

• Augmenting path (definition different than in CLRS): s-t path where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ

• To find augmenting path use BFS:

Edmonds-Karp

s t
f1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

+δ +δ +δ-δ -δ -δ

s

4
4 4

4/4
7/9

4/4
3/3

82 5

6

6

8

• Find shortest augmenting path and use it.

• Augmenting path (definition different than in CLRS): s-t path where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ

• To find augmenting path use BFS:

Edmonds-Karp

s t
f1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

+δ +δ +δ-δ -δ -δ

s

4
4 4

4/4
9/9

4/4
3/3

2/82 2/5

2/6

6

9

• Find shortest augmenting path and use it.

• Augmenting path (definition different than in CLRS): s-t path where

• forward edges have leftover capacity

• backwards edges have positive flow

• Can add extra flow: min(c1 - f1, f2, c3 - f3, c4 - f4, f5, f6) = δ

• To find augmenting path use BFS:

Edmonds-Karp

s t
f1 < c1 f2 > 0 f3 < c3 f4 < c4 f5 > 0 f6 > 0

+δ +δ +δ-δ -δ -δ

s

3/4
3/4 3/4

4/4
9/9

1/4
3/3

5/82 5/5

5/6

6

10

• When there are no more augmenting s-t paths:

• Find all augmenting paths from s.

• The nodes S that can be reached by these augmenting paths form the left side of a

minimum cut.

• edges out of S have ce = fe.

• edges into S have fe = 0.

• Capacity of the cut equals the flow.

Find a minimum cut

s

3/4
3/4 3/4

4/4
9/9

1/4
3/3

5/82 5/5

5/6

6

11

• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Example: Δ = 4

Scaling algorithm

Gf(4)

Gf

s

1

1 1

4
4 1

3

4
2 2

2
6

t
3

3 3
3

5

4

4

4

s

1

1 1

4
4 1

3

4
2 2

2
6

t
3

3 3
3

5

4

4

4

12

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

6 9

13

10

1 8

4

3

2
5

Δ = 8

s t

13

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

6 9

13

10

1 8

4

3

2
5

Δ = 8

s t

14

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

6 9

13

10

1 8

4

3

2
5

Δ = 8

9/

9/
9/

s t

15

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

6 9

4
1

1 8

4

3

2
5

Δ = 8

9

9

s t

16

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

6 9

4
1

1 8

4

3

2
5

Δ = 8

9

9

s t

17

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

6 9

4
1

1 8

4

3

2
5

Δ = 4

9

9

s t

18

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

6 9

4
1

1 8

4

3

2
5

Δ = 4

9

9

s t

4/ 4/

4/

4/

4/

19

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

2 9

4
5

1 4

4

3

2
1

Δ = 4

9

5

s t

4

4 4

20

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

2 9

4
5

1 4

4

3

2
1

Δ = 4

9

5

s t

4

4 4

21

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

2 9

4
5

1 4

4

3

2
1

Δ = 2

9

5

s t

4

4 4

22

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

2 9

4
5

1 4

4

3

2
1

Δ = 2

9

5

s t

4

4 4

2/ 2/

2/

23

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

9

4
7

1 4

4

1

2
1

Δ = 2

9

3

s t

6

4 4

2

24

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

9

4
7

1 4

4

1

2
1

Δ = 2

9

3

s t

6

4 4

2

25

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

9

4
7

1 4

4

1

2
1

Δ = 1

9

3

s t

6

4 4

2

26

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

9

4
7

1 4

4

1

2
1

Δ = 1

9

3

s t

6

4 4

2
1/ 1/

27

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

9

3
7

1 4

4

2
1

Δ = 1

10

3

s t

6

4 4

3

28

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

9

3
7

1 4

4

2
1

Δ = 1

10

3

s t

6

4 4

3

1/ 1/
1/

1/

29

Scaling algorithm
• Scaling parameter Δ

• Only consider edges with capacity at least Δ in residual graph Gf(Δ).

• Start with Δ = “highest power of 2 ≤ largest capacity out of s”

• When no more augmenting paths in Gf(Δ): Δ = Δ/2 (new phase).

• Stop when no more augmenting paths in Gf(1).

9

3
7

1 5

4

1 1

Δ = 1

10

3

s t

6

3 4

3

30

Scaling algorithm

s

1.000.000

1.000.000

1.000.000

1.000.000

1

31

Scaling algorithm

s

1.000.000

1.000.000

1.000.000

1.000.000

1

s

1.000.000

1.000.000

1.000.000

1.000.000

1

1.000.000/
1.000.000/

1.000.000/
1.000.000/

32

Scaling algorithm

s

1.000.000

1.000.000

1.000.000

1.000.000

1

s

1.000.000

1.000.000

1.000.000

1.000.000

1

1.000.000/
1.000.000/

1.000.000/

1.000.000/

1.000.000/
1.000.000/

33

Scaling algorithm

s

1.000.000

1.000.000

1.000.000

1.000.000

1

s

1.000.000

1.000.000

1.000.000

1.000.000

1

1.000.000/
1.000.000/

1.000.000/
1.000.000/

34

Scaling algorithm

s

1.000.000

1.000.000

1.000.000

1.000.000

1

s

1.000.000

1.000.000

1.000.000

1.000.000

1

1.000.000/
1.000.000/

1.000.000/
1.000.000/

35

Exercise

s t

A

B C

D

10

9 11 9

5

5

10

3 3

3 3

• Running time: O(m2 log C), where C is the largest capacity out of s.

• Lemma 1. Number of scaling phases: 1 +⎡lg C⎤

• Lemma 2. Let f the flow when Δ-scaling phase ends, and let f*be the maximum flow.
Then v(f*) ≤ v(f) + mΔ.

• Lemma 3. The number of augmentations in a scaling phase is at most 2m.

• First phase: can use each edge out of s in at most one augmenting path.

• f flow at the end of previous phase.

• Used Δ’ = 2Δ in last round.

• Lemma 2: v(f*) ≤ v(f) + mΔ’ = v(f) + 2mΔ.

• “Leftover flow” to be found ≤ 2mΔ.

• Each agumentation in a Δ-scaling phase augments flow with at least Δ.

Scaling algorithm

37

• Lemma 2. Let f the flow when Δ-scaling phase ends, and let f*be the maximum flow.
Then v(f*) ≤ v(f) + mΔ.

• By the end of the phase there is a cut c(S,T) ≤ v(f) + mΔ.

Scaling algorithm

s t

S T
c(e)-f(e) < Δ

f(e) < Δ

e1
e3
e7

e5
e2

c(S, T) = c(e1) + c(e3) + c(e7)

v(f) = f(e1) + f(e3) + f(e7) − f(e2) − f(e5)

c(S, T) − v(f) = c(e1) + c(e3) + c(e7) − f(e1) − f(e3) − f(e7) + f(e2) + f(e5)

= c(e1) − f(e1) + c(e3) − f(e3) + c(e7) − f(e7) + f(e2) + f(e5)

< Δ + Δ + Δ + Δ + Δ = 5Δ
38

• Edmonds-Karp: O(m2n)

• Scaling: O(m2 log C)

• Ford-Fulkerson O(m v(f)).

• Preflow-push O(n3)

• Other algorithms: O(mn log n) or O(min(n2/3, m1/2)m log n log U).

Maximum flow algorithms

39

• Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.

• Applications:

• planes to routes

• jobs to workers/machines

Maximum Bipartite Matching

Matching Maximum matching

matched
40

1

1

1

1
1

1

1

• Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.

• Solve via flow:

Maximum Bipartite Matching

s t

1

41

1

1

1

1
1

1

1

• Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.

• Solve via flow:

• Matching M => flow of value |M|

Maximum Bipartite Matching

s t

1

42

1

1

1

1
1

1

1

• Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.

• Solve via flow:

• Matching M => flow of value |M|

Maximum Bipartite Matching

s t

1

43

• Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.

• Solve via flow:

• Matching M => flow of value |M|

1

1

1

1
1

1

1

Maximum Bipartite Matching

s t

1

44

• Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.

• Solve via flow:

• Matching M => flow of value |M|

• Flow of value v(f) => matching of size v(f)

1

1

1

1
1

1

1

Maximum Bipartite Matching

s t

1

45

• Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

• Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.

• Maximum matching: matching of maximum cardinality.

• Solve via flow:

• Can generalize to general matchings

2

2

2

1
1

1

1

Maximum Bipartite Matching

s t

1

46

• X doctors, Y holidays, each doctor should work at at most 1 holiday, each doctor is
available at some of the holidays.

• Same problem, but each doctor should work at most c holidays?

Scheduling of doctors

Doctors Holidays

47

• X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is
available at some of the holidays.

• Same problem, but each doctor should work at most one day in each vacation
period?

Scheduling of doctors

s t

1

1

c

c

c

48

• X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is
available at some of the holidays.

• Same problem, but each doctor should work at most one day in each vacation
period?

Scheduling of doctors

s t

1

1

c

c

c

49

• X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is
available at some of the holidays.

• Same problem, but each doctor should work at most one day in each vacation
period?

Scheduling of doctors

s t

1

1

c

c

c

50

• Problem: Find maximum number of edge-disjoint paths from s to t.

• Two paths are edge-disjoint if they have no edge in common.

Edge Disjoint paths

s t

51

• Edge-disjoint path problem. Find the maximum number of edge-disjoint paths from
s to t.

• Two paths are edge-disjoint if they have no edge in common.

Edge Disjoint paths

s t

52

• Reduction to max flow: assign capacity 1 to each edge.

• Thm. Max number of edge-disjoint s-t paths is equal to the value of a maximum
flow.

• Suppose there are k edge-disjoint paths: then there is a flow of k (let all edges on

the paths have flow 1).

• Other way (graph theory course).

• Ford-Fulkerson: v(f) ≤ n (no multiple edges and therefore at most n edges out of s)
=> running time O(nm).

Edge Disjoint Paths

s t

1 1

1

1 1

1

1

1

1
1

1

1 1

53

• Network connectivity. Find minimum number of edges whose removal disconnects t
from s (destroys all s-t paths).

Network Connectivity

s t

1 1

1

1 1

1

1

1

1
1

1

1 1

54

• Network connectivity. Find minimum number of edges whose removal disconnects t
from s (destroys all s-t paths).

• Set all capacities to 1 and find minimum cut.

• Thm. (Menger) The maximum number of edge-disjoint s-t paths is equal to the

minimum number of edges whose removal disconnects t from s.

Network Connectivity

s t

1 1

1

1 1

1

1

1

1
1

1

1 1

55

• Question: Can Boston finish in first place (or in tie of first place)?

• No: Boston must win both its remaining 2 and NY must loose. But then Baltimore
and Toronto both beat NY so winner of Baltimore-Toronto will get 93 points.

• Other argument: Boston can finish with at most 92. Cumulatively the other three
teams have 274 wins currently and their 3 games against each other will give
another 3 points => 277. 277/3 = 92,33333 => one of them must win > 92.

Baseball elimination

56

Team Wins Games
left

Against

NY Bal Tor Bos

New York 92 2 - 1 1 0
Baltimore 91 3 1 - 1 1
Toronto 91 3 1 1 - 1
Boston 90 2 0 1 1 -

Baseball elimination

57

Team Wins Games
left

Against

NY Bal Tor Bos

New York 90 11 - 1 6 4
Baltimore 88 6 1 - 1 4
Toronto 87 11 6 1 - 4
Boston 79 12 4 4 4 -

• Question: Can Boston finish in first place (or in tie of first place)?

s t

NY-Bal

NY-Tor

Tor-Bal

NY

Bal

Tor

1
6

1

∞
1

= 91-90

Boston can get at most 79 + 12 = 91 points

3

4

• Boston is eliminated ⇔ max s-t flow < 8.

• Capacities on nodes.

Node capacities

⬇

c
v

e

d

c

b

a

cvin vout

e

d

c

b

a

58

