Network Flow |l

Inge Li Gortz

Network Flow

* Network flow:

- graph G=(V,E).

- Special vertices s (source) and t (sink).

- Every edge e has a capacity c(e) = 0.

* Flow:
 capacity constraint: every edge e has a flow 0 < f(e) < c(e).

- flow conservation: for all u # s, t: flow into u equals flow out of u.

S Jww= Y S ;@é
vi(v,u)EE vi(u,v)EE

« Value of flow f is the sum of flows out of s minus sum of flows into s:

V()=) fler— D, fle)=rf""(s) = f(s)

vi(s,v)EE v:(v,s)EE

« Maximum flow problem: find s-t flow of maximum value

oday

« Applications

« Finding good augmenting paths. Edmonds-Karp and scaling algorithm.

Ford-Fulkerson

+ Find (any) augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S @ »® @< @~ @t

<
f1 < 1 fo>0 fs< c3 fa<ca fs>0 fe>0

- Can add extra flow: min(c1 - f1, f2, c3- f3, ca- fs, f5, f6) = O

 To find augmenting path use DFS or BFS:

Ford-Fulkerson

* Integral capacities:
- Each augmenting path increases flow with at least 1.

- At most v(f) iterations
- Find augmenting path via DFS/BFS: O(m)
« Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the
flow on every edge is an integer.

- Bad example for Ford-Fulkerson:

2/1.000.000 _ 2/1.000.000

2/1.000.000 “2/1.000.000

Edmonds-Karp

« Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S @ »® @< @~ @t

<
f1 < 1 fo>0 fs< c3 fa<ca fs>0 fe>0

- Can add extra flow: min(c1 - f1, f2, c3- f3, ca- fs, f5, f6) = O

 To find augmenting path use BFS:

Edmonds-Karp

« Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6
S @ »® @< @~ @t

<
f1 < 1 fo>0 fs< c3 fa<ca fs>0 fe>0

- Can add extra flow: min(c1 - f1, f2, c3- f3, ca- fs, f5, f6) = O

 To find augmenting path use BFS:

Edmonds-Karp

« Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -8
S @ »® @< @~ @t

<
f1 < 1 fo>0 fs< c3 fa<ca fs>0 fe>0

- Can add extra flow: min(c1 - f1, f2, c3- f3, ca- fs, f5, f6) = O

 To find augmenting path use BFS:

Edmonds-Karp

« Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -8
S @ »® @< @~ @t

<
f1 < 1 fo>0 fs< c3 fa<ca fs>0 fe>0

- Can add extra flow: min(c1 - f1, f2, c3- f3, ca- fs, f5, f6) = O

 To find augmenting path use BFS:

Edmonds-Karp

« Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
- forward edges have leftover capacity

- backwards edges have positive flow

+6 -6 +6 +6 -6 -6

S @ g >@-< @«

<
f1 < 1 fo>0 fs< c3 fa<ca fs>0 fe>0

- Can add extra flow: min(c1 - f1, f2, c3- f3, ca- fs, f5, f6) = O

 To find augmenting path use BFS:

V.. i
Y

AN 44
3/% 1/4,7
Y-

5/6

t

10

FInd a minimum cut

« When there are no more augmenting s-t paths:
+ Find all augmenting paths from s.

- The nodes S that can be reached by these augmenting paths form the left side of a
minimum cut.

« edges out of S have ce = fe.
S have fe=0.
- Capacity of the cut equals the flow.

11

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).
« Example: A =4

12

Scaling algorithm

« Scaling parameter A
« Only consider edges with capacity at least A in residual graph G#(A).
- Start with A = “highest power of 2 < largest capacity out of s”

13

Scaling algorithm

« Scaling parameter A
« Only consider edges with capacity at least A in residual graph G#(A).
- Start with A = “highest power of 2 < largest capacity out of s”

>
I
o

10

S@® 13 > t

14

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”

9/10

s @913

15

Scaling algorithm

« Scaling parameter A
« Only consider edges with capacity at least A in residual graph G#(A).
- Start with A = “highest power of 2 < largest capacity out of s”

16

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

17

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

18

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

19

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

20

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

21

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

22

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

23

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

24

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

25

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

26

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

27

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

28

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

29

Scaling algorithm

« Scaling parameter A

« Only consider edges with capacity at least A in residual graph G#(A).

- Start with A = “highest power of 2 < largest capacity out of s”
- When no more augmenting paths in Gi(A): A = A/2 (new phase).

- Stop when no more augmenting paths in G¢(1).

30

Scaling algorithm

1.000.000

1.000.000

1.000.000

1.000.000

31

Scaling algorithm

1.000.000/

1.000.000/1.000.000 1.000.000

S
1.000.000 1.000.000
1.000.000/
1.000.000/1.000.000__~+@-__1.000.000
S

1.000.000 1.000.000

32

Scaling algorithm

1.000.000/

1.000.000/1.000.000 1.000.000

1.000.000/1.000.000 1.000.000

1.000.000/

1.000.000 1.000.000

S

@~ 1.000.000
1.000.000/

1.000.000/1.000.000™

33

Scaling algorithm

1.000.000/

1.000.000/1.000.000 1.000.000

1.000.000/1.000.000 1.000.000

1.000.000/

1.000.000 1.000.000

1.000.000 1.000.000

34

Scaling algorithm

1.000.000/

1.000.000/1.000.000 1.000.000

1.000.000/1.000.000 1.000.000

1.000.000/

1.000.000 1.000.000

1.000.000 1.000.000

35

Exercise

Scaling algorithm

« Running time: O(m2 log C), where C is the largest capacity out of s.

- Lemma 1. Number of scaling phases: 1 + [Ig C]

- Lemma 2. Let f the flow when A-scaling phase ends, and let f*be the maximum flow.
Then v(f) < v(f) + mA.

- Lemma 3. The number of augmentations in a scaling phase is at most 2m.
- First phase: can use each edge out of s in at most one augmenting path.
- f flow at the end of previous phase.
« Used A’ = 2A in last round.
« Lemma 2: v(f*) < v(f) + mA’ = v(f) + 2mA.
- “Leftover flow” to be found < 2mA.
- Each agumentation in a A-scaling phase augments flow with at least A.

37

Scaling algorithm

- Lemma 2. Let f the flow when A-scaling phase ends, and let f*be the maximum flow.
Then v(f*) < v(f) + mA.

+ By the end of the phase there is a cut ¢(S,T) < v(f) + mA.

S c(e)-f(e) < A T

€1
€3
€7

c(S,T) = c(ey) + c(e3) + c(ey)

v(f) = flep) +f(e3) +f(e7) — fley) — fles)

e,
€s

f(e) < A

c(S,T) —v(f) = c(ey) + c(e3) + cey) — f(ey) — fles) — f(eg) + fler) +f(es)
= c(ey) — f(ey) + c(e3) — fle3) + c(eq) — fleg) + f(ey) + fles)
<A+A+A+A+A=5A

38

Maximum flow algorithms

« Edmonds-Karp: O(m2n)

+ Scaling: O(m2 log C)

« Ford-Fulkerson O(m v(f)).

 Preflow-push O(n3)

« Other algorithms: O(mn log n) or O(min(n2/3, m1/2)m log n log U).

39

Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

« Matching: Subset of edges M C E such that no edges in M share an endpoint.

« Maximum matching: matching of maximum cardinality.

« Applications:
 planes to routes

- jobs to workers/machines
Matching Maximum matching

@

matched
40

Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

« Matching: Subset of edges M C E such that no edges in M share an endpoint.

« Maximum matching: matching of maximum cardinality.

« Solve via flow:

41

Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

« Matching: Subset of edges M C E such that no edges in M share an endpoint.

« Maximum matching: matching of maximum cardinality.

« Solve via flow:
« Matching M => flow of value |M|

42

Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

« Matching: Subset of edges M C E such that no edges in M share an endpoint.

« Maximum matching: matching of maximum cardinality.

« Solve via flow:
« Matching M => flow of value |M|

43

Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

« Matching: Subset of edges M C E such that no edges in M share an endpoint.

« Maximum matching: matching of maximum cardinality.

« Solve via flow:
« Matching M => flow of value |M|

44

Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

« Matching: Subset of edges M C E such that no edges in M share an endpoint.

« Maximum matching: matching of maximum cardinality.

« Solve via flow:
« Matching M => flow of value |M|
* Flow of value v(f) => matching of size v(f)

45

Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a
blue endpoint.

« Matching: Subset of edges M C E such that no edges in M share an endpoint.

« Maximum matching: matching of maximum cardinality.

« Solve via flow:
« Can generalize to general matchings

46

Scheduling of doctors

- X doctors, Y holidays, each doctor should work at at most 1 holiday, each doctor is
available at some of the holidays.

Doctors Holidays

- Same problem, but each doctor should work at most ¢ holidays?

a7

Scheduling of doctors

« X doctors, Y holidays, each doctor should work at at most ¢ holidays, each doctor is
available at some of the holidays.

- Same problem, but each doctor should work at most one day in each vacation
period?

48

Scheduling of doctors

« X doctors, Y holidays, each doctor should work at at most ¢ holidays, each doctor is
available at some of the holidays.

- Same problem, but each doctor should work at most one day in each vacation
period?

49

Scheduling of doctors

« X doctors, Y holidays, each doctor should work at at most ¢ holidays, each doctor is
available at some of the holidays.

- Same problem, but each doctor should work at most one day in each vacation
period?

50

Edge Disjoint paths

« Problem: Find maximum number of edge-disjoint paths from s to t.
« Two paths are edge-disjoint if they have no edge in common.

51

Edge Disjoint paths

- Edge-disjoint path problem. Find the maximum number of edge-disjoint paths from
s tot.

- Two paths are edge-disjoint if they have no edge in common.

52

Edge Disjoint Paths

- Reduction to max flow: assign capacity 1 to each edge.

o e
N

« Thm. Max number of edge-disjoint s-t paths is equal to the value of a maximum
flow.

« Suppose there are k edge-disjoint paths: then there is a flow of k (let all edges on
the paths have flow 1).

- Other way (graph theory course).

« Ford-Fulkerson: v(f) < n (no multiple edges and therefore at most n edges out of s)
=> running time O(nm).

53

Network Connectivity

« Network connectivity. Find minimum number of edges whose removal disconnects t
from s (destroys all s-t paths).

54

Network Connectivity

« Network connectivity. Find minimum number of edges whose removal disconnects t
from s (destroys all s-t paths).

 Set all capacities to 1 and find minimum cut.

- Thm. (Menger) The maximum number of edge-disjoint s-t paths is equal to the
minimum number of edges whose removal disconnects t from s.

55

Baseball elimination

Agalnst
Games
Team Wins left
H

New York
Baltimore 91

Toronto 91
Boston 90

N W W N
—
—
1
—

« Question: Can Boston finish in first place (or in tie of first place)?

* No: Boston must win both its remaining 2 and NY must loose. But then Baltimore
and Toronto both beat NY so winner of Baltimore-Toronto will get 93 points.

« Other argument: Boston can finish with at most 92. Cumulatively the other three
teams have 274 wins currently and their 3 games against each other will give
another 3 points => 277. 277/3 = 92,33333 => one of them must win > 92.

56

Baseball elimination

G Agalnst
Team Wins ?r?tes
.H

New York
Baltimore 88 §) 1 - 1 4
Toronto 87 11 §) 1 - 4

Boston 79 12 4 4 4 -

« Question: Can Boston finish in first place (or in tie of first place)?

Boston can get at most 79 + 12 = 91 points

« Boston is eliminated & max s-t flow < 8.

57

Node capacities

- Capacities on nodes.

M

58

