
Randomized algorithms II
Inge Li Gørtz

Thank you to Kevin Wayne for inspiration to slides

• Last week

• Contention resolution

• Global minimum cut

• Today

• Expectation of random variables

• Guessing cards

• Three examples:

• Median/Select.

• Quick-sort

Randomized algorithms

Random Variables and Expectation

• A random variable is an entity that can assume different values.

• The values are selected “randomly”; i.e., the process is governed by a
probability distribution.

• Examples: Let X be the random variable “number shown by dice”.

• X can take the values 1, 2, 3, 4, 5, 6.

• If it is a fair dice then the probability that X = 1 is 1/6:

• P[X=1] =1/6.

• P[X=2] =1/6.

• …

Random variables

• Let X be a random variable with values in {x1,…xn}, where xi are
numbers.

• The expected value (expectation) of X is defined as

• The expectation is the theoretical average.

• Example:

• X = random variable “number shown by dice”

E[X] =
6

∑
j=1

j ⋅ Pr[X = j] = (1 + 2 + 3 + 4 + 5 + 6) ⋅
1
6

= 3.5

Expected values

E[X] =
n

∑
j=1

xj ⋅ Pr[X = xj]

• Coin flips. Coin is heads with probability and tails with probability . How
many independent flips X until first heads?

• Probability of ? (first succes is in round)

• Expected value of :

p 1 − p

X = j j
Pr[X = j] = (1 − p) j−1 ⋅ p

X

E[X] =
∞

∑
j=1

j ⋅ Pr[X = j]

=
∞

∑
j=1

j ⋅ (1 − p) j−1 ⋅ p

=
p

1 − p

∞

∑
j=1

j ⋅ (1 − p) j

=
p

1 − p
⋅

1 − p
p2

=
1
p

Waiting for a first succes

for .

∞

∑
k=0

k ⋅ xk =
x

(1 − x)2

|x | < 1

• If we repeatedly perform independent trials of an experiment, each of
which succeeds with probability , then the expected number of
trials we need to perform until the first succes is .

• If is a 0/1 random variable, .

• Linearity of expectation: For two random variables X and Y we have

p > 0
1/p

X E[X] = Pr[X = 1]

E[X + Y] = E[X] + E[Y]

Properties of expectation
• Game. Shuffle a deck of cards; turn them over one at a time; try to guess each

card.

• Memoryless guessing. Can't remember what's been turned over already. Guess a
card from full deck uniformly at random.

• Claim. The expected number of correct guesses is 1.

• if guess correct and zero otherwise.

• the correct number of guesses .

• .

•

n

Xi = 1 ith

X = = X1 + … + Xn

E[Xi] = Pr[Xi = 1] = 1/n

E[X] = E[X1 + ⋯ + Xn] = E[X1] + ⋯ + E[Xn] = 1/n + ⋯ + 1/n = 1.

Guessing cards

• Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each
card.

• Guessing with memory. Guess a card uniformly at random from cards not yet seen.

• Claim. The expected number of correct guesses is .

• if guess correct and zero otherwise.

• the correct number of guesses .

• .

•

Θ(log n)

Xi = 1 ith

X = = X1 + … + Xn

E[Xi] = Pr[Xi = 1] = 1/(n − i + 1)

E[X] = E[X1] + ⋯ + E[Xn] = 1/n + ⋯ + 1/2 + 1/1 = Hn .

Guessing cards

ln n < H(n) < ln n + 1

• Coupon collector. Each box of cereal contains a coupon. There are different types
of coupons. Assuming all boxes are equally likely to contain each coupon, how
many boxes before you have at least 1 coupon of each type?

• Claim. The expected number of steps is .

• Phase = time between and distinct coupons.

• = number of steps you spend in phase .

• = number of steps in total = .

• .

• The expected number of steps:

.

n

Θ(n log n)

j j j + 1

Xj j

X X0 + X1 + ⋯ + Xn−1

E[Xj] = n /(n − j)

E[X] = E[
n−1

∑
j=0

Xj] =
n−1

∑
j=0

E[Xj] =
n−1

∑
j=0

n /(n − j) = n ⋅
n

∑
i=1

1/i = n ⋅ Hn

Coupon collector

Median/Select

• Given n numbers S = {a1, a2, …, an}.

• Median: number that is in the middle position if in sorted order.

• Select(S,k): Return the kth smallest number in S.

• Min(S) = Select(S,1), Max(S)= Select(S,n), Median = Select(S,n/2).

• Assume the numbers are distinct.

Select

Select(S, k) {

 Choose a pivot s ∈ S uniformly at random.

 For each element e in S
 if e < s put e in S’
 if e > s put e in S’’

 if |S’| = k-1 then return s

 if |S’| ≥ k then call Select(S’, k)

 if |S’| < k then call Select(S’’, k - |S’| - 1)
 }

• Worst case running time:

• If there is at least an fraction of elements both larger and smaller than s:

• Limit number of bad pivots.

• Intuition: A fairly large fraction of elements are “well-centered” => random pivot

likely to be good.

Select
Select(S, k) {

 Choose a pivot s ∈ S uniformly at random.

 For each element e in S
 if e < s put e in S’
 if e > s put e in S’’

 if |S’| = k-1 then return s

 if |S’| ≥ k then call Select(S’, k)

 if |S’| < k then call Select(S’’, k - |S’| - 1)
 }

T (n) = cn+ c(n� 1) + c(n� 2) + · · · = ⇥(n2).

"

T (n) = cn+ (1� ")cn+ (1� ")2cn+ · · ·
=

�
1 + (1� ") + (1� ")2 + · · ·

�
cn

 cn/".

• Phase j: Size of set at most and at least .n(3/4) j n(3/4) j+1

Select

Cut-off phases: 64, 48, 36, 27, 21, …

|S| phase

64 0

56 0

42 1

34 2

33 2

28 2

16 4

• Phase j: Size of set at most and at least .

• Central element: ≥ 1/4 of the elements in current S are smaller and ≥ 1/4 are larger.

• If pivot central: size of set shrinks by at least a factor 3/4 current phase ends.

• At least half the elements are central Pr[s is central] = 1/2.

• Expected number of iterations before a central pivot is found = 2

	 expected number of iterations in phase j at most 2.

• : number of steps taken by algorithm. : number of steps in phase .

• Then

• .

• Expected running time:

n(3/4) j n(3/4) j+1

⇒
⇒

⇒

X Xj j

X = X1 + X2 + . …
E[Xj] = 2cn(3/4) j

Select

E[X] = ∑
j

E[Xj] ≤ ∑
j

2cn (3
4)

j

= 2cn∑
j

(3
4)

j

≤ 8cn

S

Quicksort

• Given n numbers S = {a1, a2, …, an} return the sorted list.

• Assume the numbers are distinct.

Quicksort

Quicksort(A,p,r) {

 if |S| ≤ 1 return S

 else

 Choose a pivot s ∈ S uniformly at random.

 For each element e in S
 if e < s put e in S’
 if e > s put e in S’’

 L = Quicksort(S’)
 R = Quicksort(S’’)

 Return the sorted list L◦s◦R.
}

• Worst case: Ω(n2) comparisons.

• Best case: O(n log n)

• Enumerate elements such that .

• Indicator random variable for all pairs

• = total number of comparisons:

• Expected number of comparisons:

a1 ≤ a2 ≤ ⋯ ≤ an

i < j :

X

E[X] = E[
n−1

∑
i=1

n

∑
j=i+1

Xij] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij]

Quicksort: Analysis

Xij =

(
1 if ai and aj compared by algorithm

0 otherwise

X =
n�1X

i=1

nX

j=i+1

Xij

• Expected number of comparisons: .

• Since indicator variable:

• and compared

 or is the first pivot chosen from .

• Pivot chosen independently uniformly at random

all elements from equally likely to be chosen as first pivot from this set.

• We have

• Thus

E[X] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij]

Xij E[Xij] = Pr[Xij = 1]

ai aj ⇔
ai aj Zij = {ai, …, aj}

⇒
Zij

Pr[Xij = 1] = 2/(j − i + 1)

Quicksort: Analysis

=
n−1

∑
i=1

n−i+1

∑
k=2

2
k

<
n−1

∑
i=1

n

∑
k=1

2
k

=
n−1

∑
i=1

O(log n) = O(n log n)

E[X] =
n−1

∑
i=1

n

∑
j=i+1

E[Xij] =
n−1

∑
i=1

n

∑
j=i+1

Pr[Xij = 1] =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

