
String Matching

Inge Li Gørtz

CLRS 32

String Matching

• String matching problem:

• string T (text) and string P (pattern) over an alphabet Σ.

• |T| = n, |P| = m.

• Report all starting positions of occurrences of P in T.

P = a b a b a c a
T = b a c b a b a b a b a b a c a b

Strings

• ε: empty string

• prefix/suffix: v=xy:

• x prefix of v, if y ≠ ε x is a proper prefix of v

• y suffix of v, if y ≠ ε x is a proper suffix of v.

• Example: S = aabca

• The suffixes of S are: aabca, abca, bca, ca and a.

• The strings abca, bca, ca and a are proper suffixes of S.

Suffix of S

S

Prefix of S

String Matching

• Knuth-Morris-Pratt (KMP)

• Finite automaton

A naive string matching algorithm

a b a b a c a
b a c b a b a b a b a b a c a b

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a
a b a b a c a

a b a b a c a

a a a b a a a b a b a b a c a b b

Improving the naive algorithm

a a a b a b a
T =
P = a a a b a b a

a a a b a a a b a b a b a c a b b

Improving the naive algorithm

a a a b a b a
T =
P = a a a b a b a

a a a b a b aa a a b a a aa a a b a b aa a a b a a a

a a a b a a a a b a b a a c a b b

Improving the naive algorithm

a a a b a b a
T =
P = a a a b a b a

a a a b a b a
a a a b a b a

a a a b a a a a b a b a a c a b b

Improving the naive algorithm

a a a b a b a
T =
P = a a a b a b a

a a a b a b a

a a a b a b a
a a a b a b a

a a a b a b aa a a b a b aa a a b a b aa a a b a b aa a a b a b a

a a a b a a a a b a b a a c a b b

Improving the naive algorithm

a a a b a b a
T =
P = a a a b a b a

a a a b a b a
a a a b a b a

a a a b a b aIf we matched 5 characters
from P and then fail:

compare failed character to
2nd character in P

If we matched 3 characters
from P and then fail:

compare failed character to
3nd character in P

If we matched all characters
from P:

compare next character to
2nd character in P

Improving the naive algorithm

P = a a a b a b a

If we matched 5 characters
from P and then fail:

compare failed character to
2nd character in P

If we matched 3 characters
from P and then fail:

compare failed character to
3nd character in P

If we matched all characters
from P:

compare next character to
2nd character in P

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7

if fail
compare to 3 2 2

Improving the naive algorithm

P = a a a b a b a

If we matched 5 characters
from T and then fail:

compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:

compare failed character to
3nd character in P

If we matched all characters
from T:

compare next character to
2nd character in P

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7

if fail
compare to 3 2 2

a a a b a b a
1 2 3 4 5 6

Improving the naive algorithm

P = a a a b a b a

If we matched 5 characters
from T and then fail:

compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:

compare failed character to
3nd character in P

If we matched all characters
from T:

compare next character to
2nd character in P

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7

if fail
compare to 1 1 2 3 1 2 1 2

a a a b a b a
1 2 3 4 5 6

• KMP: P = aaababa.

Improving the naive algorithm

a a a b a b a
1 2 3 4 5 6

starting state
accepting state

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7
if fail go to 0 0 1 2 0 1 0 1

In state i after reading character j of T:
P[1…i] is the longest prefix of P that is a

suffix of T[1..j]

P
S

Longest suffix of S
that is a prefix of P

Longest prefix of P
that is a suffix of S

• KMP: P = aaababa.

• Matching:

Improving the naive algorithm

a a a b a b a
1 2 3 4 5 6

matched a a a b a b a
#matched 0 1 2 3 4 5 6 7
if fail go to 0 0 1 2 0 1 0 1

a a a b a a a b a b a aT =

KMP

• KMP: Can be seen as finite automaton with failure links:

• Failure link: longest prefix of P that is a proper suffix of what we have matched until
now.

• In state i after reading T[j]: P[1..i] is the longest prefix of P that is a suffix of T[1…j].

• Can follow several failure links when matching one character:

a b a b a aT =

a b a b a c a
1 2 3 4 5 6

KMP Analysis

• Analysis. |T| = n, |P| = m.

• How many times can we follow a forward edge?

• How many backward edges can we follow (compare to forward edges)?

• Total number of edges we follow?

• What else do we use time for?

KMP Analysis

• Lemma. The running time of KMP matching is O(n).

• Each time we follow a forward edge we read a new character of T.

• #backward edges followed ≤ #forward edges followed ≤ n.

• If in the start state and the character read in T does not match the forward
edge, we stay there.

• Total time = #non-matched characters in start state + #forward edges
followed + #backward edges followed ≤ 2n.

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

• Computing failure links: Use KMP matching algorithm.

Computation of failure links

longest prefix of P that is a proper suffix of ‘abab'

a b a b a c a
1 2 3 4 5 6

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

• Computing failure links: Use KMP matching algorithm.

Computation of failure links

longest prefix of P that is a suffix of ‘bab'

a b a b a c a
1 2 3 4 5 6

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

• Computing failure links: Use KMP matching algorithm.

Computation of failure links

a b a b a c a
1 2 3 4 5 6

longest prefix of P that is a suffix of ‘bab'

a b a b a c a
1 2 3 4 5 6

Can be found by using KMP to match ‘bab'

• Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

• Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Computation of failure links

1 2 3 4 5 6 7

a b a b a c aP =

a b a b a c a
1 2 3 4 5 6

Need to match: a, ab, aba,
abab, ababa, ababac,

ababaca

KMP

• Computing π: As KMP matching algorithm (only need π values that are
already computed).

• Running time: O(n + m):

• Lemma. Total number of comparisons of characters in KMP is at most 2n.

• Corollary. Total number of comparisons of characters in the preprocessing
of KMP is at most 2m.

KMP

• Computing π: As KMP matching algorithm (only need π values that are
already computed).

• Running time: O(n + m):

• Lemma. Total number of comparisons of characters in KMP is at most 2n.

• Corollary. Total number of comparisons of characters in the preprocessing
of KMP is at most 2m.

Finite Automaton

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

a b a b a c a

a

a a

b

a

b

starting state
accepting state

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

a

a a

b

a

b

longest prefix of P that is a proper suffix of ‘abaa'

starting state
accepting state

a b a a
a b a b a c aP:

Matched until now:

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘aa’ = ‘a’ read ‘a’?

a

a a
a b a b a c aP:

Matched until now:

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘ac’ = ‘ ’ read ‘c’?

a c
a b a b a c aP:

Matched until now:

a

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abb’ = ‘ ’ read ‘b’?

a

a b b
a b a b a c aP:

Matched until now:

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abc’ = ‘ ’ read ‘c’?

a

a b c
a b a b a c aP:

Matched until now:

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abaa’ = ‘a’ read ‘a’?

a

a

a b a a
a b a b a c aP:

Matched until now:

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P= ababaca.

a b a b a c a

longest prefix of P that is a proper suffix of ‘abac’ = ‘ ’ read ‘c’?

a

a

a b a c
a b a b a c aP:

Matched until now:

Finite Automaton

• Finite automaton: alphabet Σ = {a,b,c}. P = ababaca.

a b a b a c a

a

a a

b

a

b

b a c b a b a b a b a b a c a bT =

Finite Automaton

• Finite automaton:
• Q: finite set of states
• q0 ∈ Q: start state

• A ⊆ Q: set of accepting states

• Σ: finite input alphabet
• δ: transition function

• Matching time: O(n)
• Preprocessing time: O(m3|Σ|). Can be done in O(m|Σ|) using KMP.
• Total time: O(n + m|Σ|)

a b a b a c a

a

a a

b

a

b

