String Matching

Inge Li Gortz

CLRS 32

String Matching

e String matching problem:
e string T (text) and string P (pattern) over an alphabet 2.
 |T| =n, |Pl=m.

e Report all starting positions of occurrences of P in T.

P=ababaca
IT=bacbababababacahb

Strings
| sufixors |

- €. empty string
- prefix/suffix: v=xy: s Il
* X prefix of v, if y # € X Is a proper prefix of v I

* y suffix of v, if y # € X is a proper suffix of v.
« Example: S = aabca,
« The suffixes of S are: aabca, abca, bca, ca and a.

« The strings abca, bca, ca and a are proper suffixes of S.

String Matching

e Knuth-Morris-Pratt (KMP)

¢ Finite automaton

A naive string matching algorithm

bla|c|bl|al|bla|blalbla|bla|c|a|b
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca

ababaca

Improving the naive algorithm

P=aaababa

T=|aaak)aagj)abak)acak)b
aaababa

Improving the naive algorithm

P=aaababa

T= aaab 2

aaababa
aaaaahbhbaha

Improving the naive algorithm

P=aaababa

T= aaab aaa

aaababa

aaababa
aaababa

Improving the naive algorithm

P=aaababa

T= aaabaaaabab a [

aaababa
aaababa
aaababa
aaaaaaahbbébhaa

Improving the naive algorithm

P=aaababa

T= aaabaaaabab a [

aaababa
aaababa

aaababa
If we matched 5 characters aaababa

from P and then fail:
compare failed character to
2nd character in P

If we matched 3 characters If we matched all characters
from P and then fail: from P:
compare failed character to compare next character to

3nd character in P 2nd character in P

Improving the naive algorithm

P=aaababa

matched

#matched

if fail
compare to

If we matched 5 characters
from P and then fail:
compare failed character to
2nd character in P

If we matched 3 characters
from P and then fail:
compare failed character to
3nd character in P

If we matched all characters
from P:
compare next character to
2nd character in P

Improving the naive algorithm

P=aaababa

matched

#matched

if fail
compare to

If we matched 5 characters
from T and then fail:
compare failed character to
2nd character in P

fabb
3

If we matched 3 characters
from T and then fail:
compare failed character to
3nd character in P

If we matched all characters
from T:
compare next character to
2nd character in P

Improving the naive algorithm

P=aaababa

matched

#matched

if fail 1
compare to

:’H::::"‘ ___"_— ____ -
e rrsmaE R m=="
If we matched 5 characters If we matched 3 characters If we matched all characters
from T and then fail: from T and then fail: from T:
compare failed character to compare failed character to compare next character to
2nd character in P 3nd character in P 2nd character in P

Improving the naive algorithm

e KMP: P = aaababa.

matched

#matched

starting state

In state i after reading character j of T:
P[1...i] is the longest prefix of P that is a
suffix of T[1..]]

accepting state

Improving the naive algorithm

e KMP: P = aaababa.

matched

#matched

e Matching:

T=|alaabaaababaa

KMP

e KMP: Can be seen as finite automaton with failure links:

e Failure link: longest prefix of P that is a proper suffix of what we have matched until
NOW.

e |n state i after reading TJ[j]: P[1..i] is the longest prefix of P that is a suffix of T[1...]].

e (Can follow several failure links when matching one character:

T=l|albabaa

KMP Analysis

* Analysis. |[T|=n, |P| =m.
- How many times can we follow a forward edge?
- How many backward edges can we follow (compare to forward edges)?
- Total number of edges we follow?

« What else do we use time for?

KMP Analysis

- Lemma. The running time of KMP matching is O(n).
- Each time we follow a forward edge we read a new character of T.
- #backward edges followed < #forward edges followed < n.

 If in the start state and the character read in T does not match the forward
edge, we stay there.

- Total time = #non-matched characters in start state + #forward edges
followed + #backward edges followed < 2n.

Computation of failure links

* Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a proper suffix of ‘abalb’

aba5"@ac

Computation of failure links

* Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a suffix of ‘bab’

aba5"@ac

Computation of failure links

* Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a suffix of ‘bab’

aba5c@ac

Can be found by using KMP to match ‘bab’

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

* Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

Need to match: a, ab, aba,
abab, ababa, ababac,

P=|albabaca ababaca

KMP

- Computing : As KMP matching algorithm (only need 1t values that are
already computed).

* Running time: O(n + m):

- Lemma. Total number of comparisons of characters in KMP is at most 2n.

- Corollary. Total number of comparisons of characters in the preprocessing
of KMP is at most 2m.

KMP

- Computing : As KMP matching algorithm (only need 1t values that are
already computed).

* Running time: O(n + m):

- Lemma. Total number of comparisons of characters in KMP is at most 2n.

- Corollary. Total number of comparisons of characters in the preprocessing
of KMP is at most 2m.

Finite Automaton

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P = ababaca.

starting state

..........

. 0
. .
.® .

.........

. .
.

accepting state

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

accepting state

starting state

/

longest prefix of P that is a proper suffix of ‘abaa’

Matched untinow: a b a a
P: ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Oagbcacbca)@coa'

a

read ‘a’?| | longest prefix of P that is a proper suffix of ‘aa’ = ‘a’

Matched until now: a a
P. ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

Oagbcacbca)@coa'

a

read ‘c’?| | longest prefix of P that is a proper suffix of ‘ac’ = *’

Matched until now: a ¢
P. ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

©a9b©aCbCaOCOa'
a

read ‘b’?

longest prefix of P that is a proper suffix of ‘abb’ = *’

Matched until now:
P:

a b'b
ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

©a9b©aCbCaOCOa'
a

read ‘c’?

longest prefix of P that is a proper suffix of ‘abc’ = *’

Matched until now:
P:

a b c
ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

d

Oa;f\ccab)@agcoa'

a

read ‘a’?

longest prefix of P that is a proper suffix of ‘abaa’ = ‘a’

Matched until now:
P:

a b a a
ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P= ababaca.

d

Ca;{\wab)@agcoa'

a

read ‘c’?

longest prefix of P that is a proper suffix of ‘abac’ = *’

Matched until now:
P:

ab ac
ababaca

Finite Automaton

e Finite automaton: alphabet > = {a,b,c}. P = ababaca.

T=|blacbababababacahb

Finite Automaton

e Finite automaton:;
e (QQ: finite set of states

e o € Q: start state

e A C Q: set of accepting states

e > finite input alphabet

¢ O: transition function

e Matching time: O(n)
e Preprocessing time: O(m3|Z|). Can be done in O(m|Z|) using KMP.

e Total time: O(n + m|X|)

