String Matching

Inge Li Gørtz

String Matching

- String matching problem:
 - string T (text) and string P (pattern) over an alphabet Σ .
 - |T| = n, |P| = m.
 - Report all starting positions of occurrences of P in T.

P = a b a b a c a
T = b a c b a b a b a b a c a b

Strings

- ε: empty string
- prefix/suffix: v=xy:
 - x prefix of v, if $y \neq \varepsilon x$ is a proper prefix of v
 - y suffix of v, if $y \neq \varepsilon x$ is a proper suffix of v.
- Example: S = aabca
 - The suffixes of S are: aabca, abca, bca, ca and a.
 - The strings abca, bca, ca and a are proper suffixes of S.

String Matching

- Knuth-Morris-Pratt (KMP)
- Finite automaton

A naive string matching algorithm

P = aaababa

matched		а	а	а	b	а	b	а
#matched	0	1	2	3	4	5	6	7
if fail compare to				3		2		2

If we matched 5 characters from T and then fail: compare failed character to 2nd character in P If we matched 3 characters from T and then fail: compare failed character to 3nd character in P If we matched all characters from T: compare next character to 2nd character in P

P = aaababa

matched		а	а	а	b	а	b	а
#matched	0	1	2	3	4	5	6	7
if fail compare to				3		2		2

If we matched 5 characters from T and then fail: compare failed character to 2nd character in P If we matched 3 characters from T and then fail: compare failed character to 3nd character in P If we matched all characters from T: compare next character to 2nd character in P

P = aaababa

matched		а	а	а	b	а	b	а
#matched	0	1	2	3	4	5	6	7
if fail compare to	1	1	2	3	1	2	1	2

If we matched 5 characters from T and then fail: compare failed character to 2nd character in P If we matched 3 characters from T and then fail: compare failed character to 3nd character in P If we matched all characters from T: compare next character to 2nd character in P

KMP and π -array

• KMP: P = aaababa.

π -array									
matched		а	а	а	b	а	b	а	
#matched	0	1	2	3	4	5	6	7	
if fail go to	0	0	1	2	0	1	0	1	

KMP and π -array

• KMP: P = aaababa.

π -array										
matched		а	а	а	b	а	b	а		
#matched	0	1	2	3	4	5	6	7		
if fail go to	0	0	1	2	0	1	0	1		

• Matching:

KMP

- KMP: Can be seen as finite automaton with *failure links*:
 - Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
 - In state i after reading T[j]: P[1..i] is the longest prefix of P that is a suffix of T[1...j].
 - Can follow several failure links when matching one character:

KMP Analysis

- Analysis. |T| = n, |P| = m.
 - How many times can we follow a forward edge?
 - How many backward edges can we follow (compare to forward edges)?
 - Total number of edges we follow?
 - What else do we use time for?

KMP Analysis

- Lemma. The running time of KMP matching is O(n).
 - Each time we follow a forward edge we read a new character of T.
 - #backward edges followed \leq #forward edges followed \leq n.
 - If in the start state and the character read in T does not match the forward edge, we stay there.
 - Total time = #non-matched characters in start state + #forward edges followed + #backward edges followed ≤ 2n.

- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.
- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a proper suffix of 'abab'

• Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.

• Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.

Fingerprinting

- Fingerprint: construct randomized fingerprint for P and each substring of T of length m.
- Assume (wlog.) binary alphabet.

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i] \qquad F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

 $F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$

- Fingerprint: construct randomized fingerprint for P and each substring of T of length m.
- Assume (wlog.) binary alphabet.

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i] \qquad F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

- Fingerprint: construct randomized fingerprint for P and each substring of T of length m.
- Assume (wlog.) binary alphabet.

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i] \qquad F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

 $F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$

$$F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i] \qquad F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

$$P 1 0 1 \qquad T 1 0 1 0 1 1 0 1 0$$

 $F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$

 $F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i] \qquad F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

P 1 0 1 T 1 0 1 0 1 1 0 1 0

$$F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

 $F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$ $F(T_2) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 0 = 2$

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i] \qquad F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

Т

$$F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(T_2) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 0 = 2$$

$$F(T_3) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i]$$

$$F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

$$F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(T_2) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 0 = 2$$

$$F(T_3) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(T_4) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 1 = 3$$

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i]$$

$$F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

$$F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(T_2) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 0 = 2$$

$$F(T_3) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(T_4) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 1 = 3$$

$$F(T_5) = 2^2 \cdot 1 + 2^1 \cdot 1 + 2^0 \cdot 0 = 6$$

Ρ

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i]$$

$$F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

1

1

0

()

$$F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

P occurs in T at position s

$$\Leftrightarrow$$

F(P) = F(T_s)

- $F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$ $F(T_2) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 0 = 2$ $F(T_3) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$ $F(T_4) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 1 = 3$ $F(T_5) = 2^2 \cdot 1 + 2^1 \cdot 1 + 2^0 \cdot 0 = 6$ $F(T_6) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$
- $F(T_7) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 0 = 2$

Ρ

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i]$$

0

$$F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

$$F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5 \qquad F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0$$

$$F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(T_2) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 0 = 2$$

$$F(T_3) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$\mathsf{F}(\mathsf{T}_4) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 1 = 3$$

$$F(T_5) = 2^2 \cdot 1 + 2^1 \cdot 1 + 2^0 \cdot 0 = 6$$

$$F(T_6) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

 $F(T_7) = 2^2 \cdot 0 + 2^1 \cdot 1 + 2^0 \cdot 0 = 2$

P occurs in T at position s

$$\Leftrightarrow$$

F(P) = F(T_s)

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i] \qquad F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

$$P 1 0 1 \qquad T 1 0 1 0 1 1 0 1 0$$

$$F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

$$F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

P occurs in T at position s

$$\Leftrightarrow$$

F(P) = F(T_s)

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i] \qquad F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

$$P \boxed{1 \ 0 \ 1} \qquad T \boxed{1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0}$$

$$F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

 $F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$ $F(T_2) =$

P occurs in T at position s

$$\Leftrightarrow$$

 $F(P) = F(T_s)$

$$F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

 $F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$ $F(T_2) = (F(T_1) - 2^2 \cdot 1) \cdot 2 + 2^0 \cdot 0 = 2$

P occurs in T at position s

$$\Leftrightarrow$$

 $F(P) = F(T_s)$

$$F(P) = \sum_{i=1}^{m} 2^{m-i} P[i]$$

$$F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

$$F(P) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$$

 $F(T_1) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$ $F(T_2) = (F(T_1) - 2^2 \cdot 1) \cdot 2 + 2^0 \cdot 0 = 2$ $F(T_3) = (F(T_2) - 2^2 \cdot 0) \cdot 2 + 2^0 \cdot 1 = 5$

P occurs in T at position s

$$\Leftrightarrow$$

 $F(P) = F(T_s)$

• Can compute $F(T_{s+1})$ from $F(T_s)$:

$$F(T_{s+1}) = 2 \cdot F(T_s) - 2^m T[s] + T[s+m+1]$$

- *m* large: Numbers too big to calculate in constant time.
- Solution: randomization. Choose prime $p \le n^2 m$ randomly.

$$F_p(P) = F(P) \mod p = \sum_{i=1}^m 2^{m-i} P[i] \mod p$$
$$F_p(T_s) = F(T_s) \mod p = \sum_{i=1}^m 2^{m-i} T[s+i-1] \mod p$$

m

• Can compute $F_p(T_{s+1})$ from $F_p(T_s)$ in constant time:

 $F_p(T_{s+1}) = 2 \cdot (F_p(T_s) \mod p) - (2^m \mod p) \cdot T[s] + T[s+m-1] \mod p$

- P matches T at position $s \Rightarrow F_p(P) = F_p(T)$.
- Opposite not true.
 - p random prime $\leq n^2 m \Rightarrow$ probability of false match $\leq 2.53/m$.

- Rabin-Karp:
 - Choose random prime $\leq n^2 m$.
 - Compute $F_p(P)$.
 - For each position s in T compute $F_p(T_s)$ and compare to $F_p(P)$. If $F_p(P) = F_p(T_s)$ declare probable match or check explicitly.
- Time: $\Theta(m + n)$ randomized Monte Carlo algorithm (with errors).
- Can verify *all* candidate matches in O(n) time.
 - Las Vegas algorithm (no errors, expected running time) with expected running time O(n):
 - Run algorithm
 - Verify
 - Rerun if errors.