String Matching

Inge Li Gørtz

String Matching

- String matching problem:
- string T (text) and string P (pattern) over an alphabet Σ.
- $|T|=n,|P|=m$.
- Report all starting positions of occurrences of P in T .

$$
\begin{aligned}
P & =a b a b a c a \\
T & =b a c b a b a b a b a b a c a b
\end{aligned}
$$

Strings

- ε : empty string
- prefix/suffix: v=xy:
- x prefix of v, if $y \neq \varepsilon x$ is a proper prefix of v
- y suffix of v, if $y \neq \varepsilon x$ is a proper suffix of v.
- Example: S = aabca
- The suffixes of S are: aabca, abca, bca, ca and a.
- The strings abca, bca, ca and a are proper suffixes of S.

String Matching

- Knuth-Morris-Pratt (KMP)
- Finite automaton

A naive string matching algorithm

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline b & a & c & b & a & b & a & b & a & b & a & b & a & c & a \\
\hline
\end{array} \\
& \text { a b a b a c a } \\
& \text { a b a b a c a } \\
& a b a b a c a \\
& \text { a b a b a c a } \\
& \text { a b a b a c a } \\
& \text { a b a b a c a } \\
& a b a b a c a \\
& \text { a b a b a c a } \\
& a b a b a c a \\
& a b a b a c a
\end{aligned}
$$

Improving the naive algorithm

$$
\begin{aligned}
\mathrm{P}= & \mathrm{aa} a \mathrm{baba} \\
\mathrm{~T}= & \mathrm{aa} a \mathrm{~b} a \mathrm{a} a b \text { a } b a b a c a b b \\
& \mathrm{a} a \mathrm{a} b a b \mathrm{a}
\end{aligned}
$$

Improving the naive algorithm

$$
\begin{aligned}
& P=a a a b a b a \\
& T=a \text { a aba a a } \\
& \text { a a a a a b ba a a }
\end{aligned}
$$

Improving the naive algorithm

$$
\begin{aligned}
& P= a a a b a b a \\
& T= a a a b a a a a b a b a \\
& a \operatorname{a} a b b a \\
& a a a b a b a \\
& a a a b a b a
\end{aligned}
$$

Improving the naive algorithm

$$
\begin{aligned}
& P=a a a b a b a \\
& T=a a a b a a a a b a b a \\
& \text { a a a b a b a } \\
& \text { a a a b a b a } \\
& \text { a a a b a b a } \\
& \text { a a a a a a alaba a }
\end{aligned}
$$

Improving the naive algorithm

$$
P=a a a b a b a
$$

$$
T=a \operatorname{a} b a a a a b a b a
$$

$$
a \mathrm{a} a \mathrm{~b} a \mathrm{~b} \mathrm{a}
$$

$$
\mathrm{a} a \mathrm{a} b \mathrm{a} b \mathrm{a}
$$

a a a b a b a

```
If we matched 5 characters
    from T and then fail:
compare failed character to
    2nd character in P
```

a a a b a b a

If we matched 3 characters from T and then fail: compare failed character to 3nd character in P

If we matched all characters from T :
compare next character to 2nd character in P

Improving the naive algorithm

$$
P=a a a b a b a
$$

matched		a	a	a	b	a	b	a
\#matched	0	1	2	3	4	5	6	7
if fail compare to				3		2		2

If we matched 5 characters

 from T and then fail: compare failed character to 2nd character in PIf we matched 3 characters from T and then fail: compare failed character to 3nd character in P

If we matched all characters from T :
compare next character to 2nd character in P

Improving the naive algorithm

$$
P=a a a b a b a
$$

matched		a	a	a	b	a	b	a
\#matched	0	1	2	3	4	5	6	7
if fail compare to				3		2		2

If we matched 5 characters

 from T and then fail: compare failed character to 2nd character in PIf we matched 3 characters from T and then fail: compare failed character to 3nd character in P

If we matched all characters from T :
compare next character to 2nd character in P

Improving the naive algorithm

$$
P=a a a b a b a
$$

matched		a	a	a	b	a	b	a
\#matched	0	1	2	3	4	5	6	7
if fail compare to	1	1	2	3	1	2	1	2

[^0]If we matched 3 characters from T and then fail: compare failed character to 3nd character in P

If we matched all characters from T :
compare next character to 2nd character in P

KMP and π-array

- KMP: $P=$ aaababa.

π-array

KMP and π-array

- KMP: P = aaababa.

π-array

matched		a	a	a	b	a	b	a
\#matched	0	1	2	3	4	5	6	7
if fail go to	0	0	1	2	0	1	0	1

- Matching:

$$
T=a a \operatorname{a} a \mathrm{a} a \mathrm{a} a \mathrm{~b} a \mathrm{a}
$$

KMP

- KMP: Can be seen as finite automaton with failure links:
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- In state i after reading $T[\mathrm{j}]: \mathrm{P}[1 . . \mathrm{i}]$ is the longest prefix of P that is a suffix of $\mathrm{T}[1 \ldots \mathrm{j}]$.
- Can follow several failure links when matching one character:

$$
T=a b a b a a
$$

KMP Analysis

- Analysis. $|\mathrm{T}|=\mathrm{n},|\mathrm{P}|=\mathrm{m}$.
- How many times can we follow a forward edge?
- How many backward edges can we follow (compare to forward edges)?
- Total number of edges we follow?
- What else do we use time for?

KMP Analysis

- Lemma. The running time of KMP matching is $\mathrm{O}(\mathrm{n})$.
- Each time we follow a forward edge we read a new character of T.
- \#backward edges followed \leq \#forward edges followed $\leq \mathrm{n}$.
- If in the start state and the character read in T does not match the forward edge, we stay there.
- Total time = \#non-matched characters in start state + \#forward edges followed + \#backward edges followed $\leq 2 n$.

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.

```
longest prefix of P that is a proper suffix of 'abab'
```


Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.

```
```

longest prefix of P that is a suffix of 'bab'

```
```

```
```

longest prefix of P that is a suffix of 'bab'

```
```


Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a suffix of 'bab'

Can be found by using KMP to match 'bab'

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

$$
P=\begin{array}{rlllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
a & b & a & b & a & c & a
\end{array}
$$

Rabin-Karp

Fingerprinting

Rabin-Karp

- Fingerprint: construct randomized fingerprint for P and each substring of T of length m.
- Assume (wlog.) binary alphabet.

$$
\begin{aligned}
& F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] \\
& F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
& \begin{array}{|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline
\end{array} \\
& F(P)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5
\end{aligned}
$$

Rabin-Karp

- Fingerprint: construct randomized fingerprint for P and each substring of T of length m.
- Assume (wlog.) binary alphabet.

$$
\begin{array}{ll}
F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] & F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
P \begin{array}{|l|l|l|}
\hline 1 & 0 & 1 \\
F & & \mathrm{~T})=2^{2 \cdot 1}+2^{1 \cdot} \cdot 0+2^{0 \cdot 1}=5
\end{array} & \mathrm{~F}\left(\mathrm{~T}_{1}\right)= \\
\hline
\end{array}
$$

Rabin-Karp

- Fingerprint: construct randomized fingerprint for P and each substring of T of length m.
- Assume (wlog.) binary alphabet.

$$
\begin{array}{ll}
F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] & F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
P \begin{array}{|l|l|l}
1 & 0 & 1 \\
F(P)=2^{2 \cdot 1}+2^{1 \cdot} \cdot 0+2^{0 \cdot 1}=5 & & \mathrm{~T}\left(\mathrm{~T}_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot} \cdot 0+2^{0 \cdot 1}=5
\end{array}
\end{array}
$$

Rabin-Karp

$$
\begin{array}{ll}
F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] & F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
\mathrm{P} \begin{array}{|l|l|l}
\hline 1 & 0 & 1 \\
\mathrm{~F}(\mathrm{P})=2^{2 \cdot 1}+2^{1 \cdot} \cdot 0+2^{0 \cdot 1}=5 & \mathrm{~T} \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
\hline
\end{array} \\
\hline & \mathrm{~F}\left(\mathrm{~T}_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5
\end{array}
\end{array}
$$

Rabin-Karp

$$
\begin{array}{ll}
F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] & F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
P \begin{array}{|l|l|l|}
1 & 0 & 1 \\
F & (P)=2^{2 \cdot 1}+2^{1} \cdot 0+2^{0 \cdot 1}=5 & T(1) 0 \\
& F\left(T_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& F\left(T_{2}\right)=2^{2 \cdot 0}+2^{1 \cdot 1}+2^{20} \cdot 0=2
\end{array}
\end{array}
$$

Rabin-Karp

$$
\begin{aligned}
& F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] \\
& \begin{array}{|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array} \\
& F(P)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|}
\hline T & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline
\end{array} \\
& F\left(T_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& F\left(T_{2}\right)=2^{2 \cdot 0}+2^{1 \cdot 1}+2^{0 \cdot 0}=2 \\
& F\left(T_{3}\right)=2^{2 \cdot 1}+2^{1 \cdot} \cdot 0+2^{0 \cdot 1}=5
\end{aligned}
$$

Rabin-Karp

$$
\begin{array}{ll}
F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] & F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
P \begin{array}{|l|l|}
\hline 101 \\
F & (P)=2^{2 \cdot 1}+2^{1} \cdot 0+2^{0 \cdot 1}=5 \\
& \mathrm{~T} \\
& \mathrm{~F}\left(\mathrm{~T}_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& \mathrm{~F}\left(\mathrm{~T}_{2}\right)=2^{2 \cdot 0}+2^{1 \cdot 1}+2^{0 \cdot 0}=2 \\
& \mathrm{~F}\left(\mathrm{~T}_{3}\right)=2^{2 \cdot 1}+2^{1 \cdot} \cdot 0+2^{0 \cdot 1}=5 \\
& \mathrm{~F}\left(\mathrm{~T}_{4}\right)=2^{2 \cdot 0}+2^{1 \cdot 1}+2^{0 \cdot 1}=3
\end{array}
\end{array}
$$

Rabin-Karp

$$
\begin{array}{ll}
F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] & F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
\mathrm{P} \begin{array}{|l|l|}
101 \\
\mathrm{~F}(\mathrm{P})=2^{2 \cdot 1}+2^{1} \cdot 0+2^{0 \cdot 1}=5 & \mathrm{~T} \\
& \mathrm{~F}\left(\mathrm{~T}_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& \mathrm{~F}\left(\mathrm{~T}_{2}\right)=2^{2 \cdot 0}+2^{1 \cdot} \cdot 1+2^{0 \cdot 0}=2 \\
& \mathrm{~F}\left(\mathrm{~T}_{3}\right)=2^{2 \cdot 1}+2^{1 \cdot} \cdot 0+2^{0 \cdot 1}=5 \\
& \mathrm{~F}\left(\mathrm{~T}_{4}\right)=2^{2 \cdot 0}+2^{1 \cdot 1}+2^{0 \cdot 1}=3 \\
& \mathrm{~F}\left(\mathrm{~T}_{5}\right)=2^{2 \cdot 1}+2^{1 \cdot 1}+2^{0} \cdot 0=6
\end{array}
\end{array}
$$

Rabin-Karp

$$
\begin{aligned}
& F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] \\
& F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
& \begin{array}{|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array} \\
& F(P)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|}
\hline T & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline
\end{array} \\
& F\left(T_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot} \cdot 0+2^{0 \cdot 1}=5 \\
& F\left(T_{2}\right)=2^{2 \cdot 0}+2^{1 \cdot 1}+2^{0 \cdot 0}=2 \\
& F\left(T_{3}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& F\left(T_{4}\right)=2^{2 \cdot 0}+2^{1 \cdot 1}+2^{0 \cdot 1}=3 \\
& F\left(T_{5}\right)=2^{2 \cdot 1}+2^{1 \cdot 1}+2^{0 \cdot 0}=6 \\
& F\left(T_{6}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& F\left(T_{7}\right)=2^{2 \cdot 0}+2^{1 \cdot 1}+2^{0 \cdot 0}=2
\end{aligned}
$$

Rabin-Karp

$$
\begin{aligned}
& F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] \\
& F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
& \begin{array}{|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array} \\
& F(P)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& F\left(T_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& F\left(T_{2}\right)=2^{2 \cdot 0}+2^{1 \cdot 1}+2^{0 \cdot 0}=2 \\
& F\left(T_{3}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& F\left(T_{4}\right)=2^{2 \cdot 0}+2^{1 \cdot 1}+2^{0 \cdot 1}=3 \\
& F\left(T_{5}\right)=2^{2 \cdot 1}+2^{1 \cdot 1}+2^{0 \cdot 0}=6 \\
& F\left(T_{6}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& F\left(T_{7}\right)=2^{2 \cdot 0}+2^{1 \cdot 1}+2^{0 \cdot 0}=2
\end{aligned}
$$

Rabin-Karp

$$
\begin{array}{ll}
F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] & \\
l & F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
\mathrm{P} \begin{array}{|l|l|l|}
\hline 1 & 0 & 1 \\
F & & \mathrm{~T}(\mathrm{P})=2^{2 \cdot 1}+2^{1 \cdot} \cdot 0+2^{0 \cdot 1}=5
\end{array} & \mathrm{~F}\left(\mathrm{~T}_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5
\end{array}
$$

Rabin-Karp

$$
\begin{array}{ll}
F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] & F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
\mathrm{P} \begin{array}{|l|l|l|}
1 & 0 & 1 \\
\mathrm{~F}(\mathrm{P})=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 & \mathrm{~T} & 1|0||l| l|l| l|l| l \mid \\
& \mathrm{F}\left(\mathrm{~T}_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& \mathrm{~F}\left(\mathrm{~T}_{2}\right)=
\end{array}
\end{array}
$$

Rabin-Karp

$$
\begin{array}{ll}
F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] & F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
P \begin{array}{|l|l|l|}
1 & 0 & 1 \\
F & (P)=2^{2 \cdot 1}+2^{1} \cdot 0+2^{0 \cdot 1}=5 & \mathrm{~T} \\
& & F\left(T_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& F\left(T_{2}\right)=\left(F\left(T_{1}\right)-2^{2 \cdot 1}\right) \cdot 2+2^{0 \cdot 0}=2
\end{array}
\end{array}
$$

P occurs in T at position s

$$
F(P)=F\left(T_{s}\right)
$$

Rabin-Karp

$$
\begin{array}{cl}
F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] & F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \\
P \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 1 \\
F & (P)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 & \mathrm{~T}\left(\mathrm{~T}_{1}\right)=2^{2 \cdot 1}+2^{1 \cdot 0}+2^{0 \cdot 1}=5 \\
& \mathrm{~F}\left(\mathrm{~T}_{2}\right)=\left(\mathrm{F}\left(\mathrm{~T}_{1}\right)-2^{2 \cdot 1}\right) \cdot 2+2^{0 \cdot 0}=2 \\
& \mathrm{~F}\left(\mathrm{~T}_{3}\right)=\left(\mathrm{F}\left(\mathrm{~T}_{2}\right)-2^{2 \cdot 0}\right) \cdot 2+2^{0 \cdot 1}=5 \\
\hline \text { P occurs in T at position s } & \\
\mathrm{F}(\mathrm{P})=\mathrm{F}\left(\mathrm{~T}_{\mathrm{s}}\right)
\end{array} & \\
\hline
\end{array}
$$

Rabin-Karp

- Can compute $F\left(T_{s+1}\right)$ from $F\left(T_{s}\right)$:

$$
F\left(T_{s+1}\right)=2 \cdot F\left(T_{s}\right)-2^{m} T[s]+T[s+m+1]
$$

- m large: Numbers too big to calculate in constant time.
- Solution: randomization. Choose prime $p \leq n^{2} m$ randomly.

$$
\begin{aligned}
& F_{p}(P)=F(P) \bmod p=\sum_{i=1}^{m} 2^{m-i} P[i] \bmod p \\
& F_{p}\left(T_{s}\right)=F\left(T_{s}\right) \quad \bmod p=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \quad \bmod p
\end{aligned}
$$

Rabin-Karp

- Can compute $F_{p}\left(T_{s+1}\right)$ from $F_{p}\left(T_{s}\right)$ in constant time:

$$
F_{p}\left(T_{s+1}\right)=2 \cdot\left(F_{p}\left(T_{s}\right) \bmod p\right)-\left(2^{m} \bmod p\right) \cdot T[s]+T[s+m-1] \bmod p
$$

- P matches T at position $s \Rightarrow F_{p}(P)=F_{p}(T)$.
- Opposite not true.
- p random prime $\leq n^{2} m \Rightarrow$ probability of false match $\leq 2.53 / m$.

Rabin-Karp

- Rabin-Karp:
- Choose random prime $\leq \mathrm{n}^{2} \mathrm{~m}$.
- Compute $F_{p}(P)$.
- For each position s in T compute $F_{p}\left(T_{s}\right)$ and compare to $F_{p}(P)$. If $F_{p}(P)=F_{p}\left(T_{s}\right)$ declare probable match or check explicitly.
- Time: $\Theta(m+n)$ randomized Monte Carlo algorithm (with errors).
- Can verify all candidate matches in $\mathrm{O}(\mathrm{n})$ time.
- Las Vegas algorithm (no errors, expected running time) with expected running time $O(n)$:
- Run algorithm
- Verify
- Rerun if errors.

[^0]: If we matched 5 characters from T and then fail: compare failed character to 2nd character in P

