String Matching

Inge Li Gørtz

Strings

- ε: empty string
- prefix/suffix: v=xy:
 - x prefix of v, if $y \neq \varepsilon$ x is a proper prefix of v
 - y suffix of v, if $y \neq \varepsilon x$ is a proper suffix of v.
- Example: S = aabca
 - The suffixes of S are: aabca, abca, bca, ca and a.
 - The strings abca, bca, ca and a are proper suffixes of S.

S

Prefix of S

String Matching

- String matching problem:
 - string T (text) and string P (pattern) over an alphabet Σ .
 - |T| = n, |P| = m.
 - Report all starting positions of occurrences of P in T.
 - P = a b a b a c a
 - T = b a c b a b a b a b a c a b

String Matching

- Knuth-Morris-Pratt (KMP)
- Finite automaton

KMP

- KMP: Can be seen as finite automaton with *failure links*:
 - Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
 - In state i after reading T[j]: P[1..i] is the longest prefix of P that is a suffix of T[1...j].
 - Can follow several failure links when matching one character:

KMP Analysis

- Analysis. |T| = n, |P| = m.
 - · How many times can we follow a forward edge?
 - · How many backward edges can we follow (compare to forward edges)?
 - Total number of edges we follow?
 - · What else do we use time for?

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.
- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a proper suffix of 'abab'

 $a_{3}b_{4}a_{5}c_{6}a_{4}$

KMP Analysis

- Lemma. The running time of KMP matching is O(n).
 - Each time we follow a forward edge we read a new character of T.
 - #backward edges followed ≤ #forward edges followed ≤ n.
 - If in the start state and the character read in T does not match the forward edge, we stay there.
 - Total time = #non-matched characters in start state + #forward edges followed + #backward edges followed ≤ 2n.

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.
- · Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a suffix of 'bab'

S

P

ongest prefix of

is a suffix of

Computation of failure links Computing failure links: As KMP matching algorithm (only need failure links that are already computed). Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

Rabin-Karp

- Fingerprint: construct randomized fingerprint for *P* and each substring of *T* of length *m*.
- Assume (wlog.) binary alphabet.

 $F(P) = \sum 2^{m-i} P[i]$

i=1

$$F(T_s) = \sum_{i=1}^{m} 2^{m-i} T[s+i-1]$$

P 1 0 1

 $\mathsf{F}(\mathsf{P}) = 2^2 \cdot 1 + 2^1 \cdot 0 + 2^0 \cdot 1 = 5$

Rabin-Karp

Fingerprinting

Rabin-Karp

- Fingerprint: construct randomized fingerprint for *P* and each substring of *T* of length *m*.
- Assume (wlog.) binary alphabet.

Rabin-Karp

- Fingerprint: construct randomized fingerprint for *P* and each substring of *T* of length *m*.
- Assume (wlog.) binary alphabet.

Rabin-Karp

- Can compute $F_p(T_{s+1})$ from $F_p(T_s)$ in constant time:
- $F_p(T_{s+1}) = 2 \cdot (F_p(T_s) \mod p) (2^m \mod p) \cdot T[s] + T[s+m-1] \mod p$
- *P* matches *T* at position $s \Rightarrow F_p(P) = F_p(T)$.
- Opposite not true.
 - *p* random prime $\leq n^2 m \Rightarrow$ probability of false match $\leq 2.53/m$.

Rabin-Karp

• Can compute $F(T_{s+1})$ from $F(T_s)$:

$$F(T_{s+1}) = 2 \cdot F(T_s) - 2^m T[s] + T[s+m+1]$$

- *m* large: Numbers too big to calculate in constant time.
- Solution: randomization. Choose prime $p \le n^2 m$ randomly.

$$F_p(P) = F(P) \mod p = \sum_{i=1}^m 2^{m-i} P[i] \mod p$$
$$F_p(T_s) = F(T_s) \mod p = \sum_{i=1}^m 2^{m-i} T[s+i-1] \mod p$$

Rabin-Karp

• Rabin-Karp:

- Choose random prime $\leq n^2 m$.
- Compute F_p(P).
- For each position s in T compute $F_p(T_s)$ and compare to $F_p(P)$. If $F_p(P) = F_p(T_s)$ declare probable match or check explicitly.
- Time: $\Theta(m + n)$ randomized Monte Carlo algorithm (with errors).
- Can verify all candidate matches in O(n) time.
 - Las Vegas algorithm (no errors, expected running time) with expected running time O(n):
 - Run algorithm
 - Verify
 - Rerun if errors.