Lecture

At the lecture we will talk about string matching algorithms: Rabin-Karp fingerprinting and the Knuth-Morris-Pratt algorithm (KMP). You should read Jeff Ericksons notes (see webpage).

Exercises

1 KMP Solve
1.1 [w] Compute the prefix function π for the pattern $P=a b c a b a$ and draw the corresponding automaton with failure links. Run the matching algorithm on the text string $T=a a a b c a b a b c a b b a a b c a b a a b$.
1.2 [w] Compute the prefix function π for the pattern $a b a b b a b b a b b a b a b b a b b$ when the alphabet is $\Sigma=\{a, b\}$ and draw the corresponding automaton with failure links.
1.3 Explain how to determine the occurrences of pattern P in the text T by examining the π function for the string $P \$ T$, where $\$$ is a new character not in the alphabet.

2 Rabin-Karp[w] Run the Karp-Rabin fingerprinting algorithm with the following fingerprint function:

$$
F(P)=\sum_{i=1}^{m} 2^{m-i} P[i] \bmod 5 \quad F\left(T_{s}\right)=\sum_{i=1}^{m} 2^{m-i} T[s+i-1] \bmod 5
$$

on the following example: $T=100101110110001$ and $P=1011$.

3 String matching with gaps In string matching with gaps the pattern P can contain a gap character \star that can match any string (of arbitrary length even length zero). An example of such a string is $P=a b \star a c \star a$, which occurs in the text $T=$ bababacbcca in two ways:

T:	b	ab	ab	ac	bcc	a
$\mathrm{P}:$		ab	\star	ac	\star	a

or

$\mathrm{T}:$	bab	ab		ac	bcc	a
$\mathrm{P}:$		ab	\star	ac	\star	a

There are no gap characters in the text-only in the pattern.
Give an algorithm to find an occurrence of a pattern P containing gap characters in a text T in time $O(n+m)$. That is, preprocessing time + matching time should be $O(n+m)$).

4 Christmas songs (exam 2015) You are putting together a set of Christmas songs that will be handed out at the Christmas party. The Dean has declared that every song must contain the sentence "Merry_Christmas Dear $_{\checkmark}$ Dean", where " \llcorner " denotes a blank space. E.g. the song:


```
We
We
Dear
Dear\sqcupDean
```

contains one occurrence of of the sentence "Merry Christmas $_{\checkmark}$ Dear $_{\checkmark}$ Dean" (line breaks are disregarded).
Formally, you are given a set S of songs S_{1}, \ldots, S_{k} and a sentence P. Song S_{i} contains n_{i} characters and P contains m characters. Let $n=\sum_{i=1}^{k} n_{i}$ denote the total number of characters in the songs. All the strings are over an alphabet of size $O(1)$. Describe an algorithm that returns all the songs that contain P. Analyze the asymptotic running time of your algorithm. Remember to argue that your algorithm is correct.

5 [\dagger] Implement KMP Implement the KMP algorithm on CodeJudge.

6 Pattern matching on trees ${ }^{1}$ Suppose we want to search for a string inside a labeled rooted tree. Our input consists of a pattern string $P[1 . . m]$ and a rooted text tree T with n nodes, each labeled with a single character. Nodes in T can have any number of children. Our goal is to either return a downward path in T whose labels match the string P, or report that there is no such path.

The string SEARCH appears on a downward path in the tree.
6.1 Describe and analyze a variant of KarpRabin that solves this problem in $O(m+n)$ expected time.
6.2 Describe and analyze a variant of KnuthMorrisPratt that solves this problem in $O(m+n)$ time.

Hint: If you use the optimized failure pointers described in section 7.7 in the notes, then the longest failure chain has length at most $O(\log m)$.

7 Finite String Matching Automaton Consider the folowing automaton: Instead of having failure edges as in the KMP automaton each state/node has $|\Sigma|$ edges out of it. The automaton should still have the property that if you are in state i after having read j characters from T then $P[1 \ldots i]$ is the longest prefix of P that matches a suffix of $T[1 \ldots j]$ (as is the case in the KMP automaton). Formally, let $Q=\{0,1, \ldots, m\}$ be the set of states in the automata. We have a transition function $\delta: Q \times \Sigma$, that for any $q \in Q$ and $a \in \Sigma$ satisfies that

$$
\delta(q, a)=\max \{k: P[1 \ldots k] \text { is a proper suffix of the string } P[1 \ldots q] \circ a\}
$$

7.1 Construct both the string-matching automaton for the pattern $P=a b c a b a$ and run the matching algorithm on the text string $T=a a a b c a b a b c a b b a a b c a b a a b$.
7.2 What is the running time of matching a text T given the finite string matching automaton?
7.3 Argue that it takes at least $\Omega(m|\Sigma|)$ time to construct the finite string matching automaton
$7.4[*]$ Give an efficient algorithm for computing the transition function δ for the string-matching automaton corresponding to a given pattern P. Your algorithm should run in time $O(m|\Sigma|)$. (Hint: Prove that $\delta(q, a)=$ $\delta(\pi[q], a)$ if $q=m$ or $P[q+1] \neq a$.)

[^0]
[^0]: ${ }^{1}$ Modified exercise from Jeff Ericksons notes

