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Technical University of Denmark

Written exam, December 11, 2020.

Course name: Algorithms and data structures II.

Course number: 02110.

Aids allowed: All aids allowed. NO open internet.

Exam duration: 4 hours

Weighting: Question 1: 29% - Question 2: 12% - Question 3: 15% - Question 4: 26% - Question 5: 18%

The weighting is only an approximative weighting.

You can answer the exam in either Danish or English.

All questions should be answered by filling out the box below the question.

As exam paper just hand in this and the following pages filled out.
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Question 1

Question 1.1 (9%) Consider the unweighted graph G below.
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Question 1.1.1 What is the size of a minimum cut in the graph? Give a minimum cut as a partitioning
of the vertices. How many minimum cuts are there?

Solution:

Size of a minimum cut: 2

Minimum cut (partition of the vertices): {A}, {B,C,D,E} or {A,B,C,D}, {E}

Number of minimum cuts: 2

Question 1.1.2 Consider running the randomized Min-Cut algorithm on the graph G. Assume we first
contract edge e3. What is the probability that B and C are in the same contracted node after the next step?
Explain your answer.

Solution:

Probability: 1/3

After the contraction the graph looks like this:
A

C,D

E
B

The probability that B and C are in the same component after the next step is thus the
same as the probability that we contract either e2 or e5 in the next step. This is 2/6 = 1/3.
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Question 1.2 (7%) How does the red-black tree below look after inserting 5? Choose the correct tree
and color the nodes the color they have after the insertion. (You can either color the nodes, write R or B
next to each node, or clearly mark the red and black nodes in some other way.)
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Question 1.3 (7%) Consider a 2-level rotated array data structure below.

Show the result of applying the operation Insert(7, 8) and then the operation Delete(2) in that order.
(Recall that Insert(i, x) inserts a new entry with value x immediately to the left of entry i.)

Solution:

9 6 5 7 0 3 1 8 2 1 5 3 8 4 � 1

Here I have rebuild the array that we insert/delete in when inserting/deleting, so that its o↵set is 0 after
the rebuild.

Question 1.4 (6%) A sequence of n operations is performed on a data structure. The cost T (i) of the
ith operation is:

T (i) =

(
i2 if i is a power of 2

1 otherwise

The worst case cost of an operation is:

A ⇥(1) B ⇥(n) C ⇥(n2) D ⇥(2n) E ⇥(22n)

The amortized cost of an operation is:

A ⇥(1) B ⇥(
p
n) C ⇥(n) D ⇥(n2) E ⇥(2n)
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Question 2 (12%)

Consider the network N below with capacities and flow on the edges. The red numbers are the flow values
and the black are the capacities.

A B H
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0/2
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Question 2.1 (7%) Is this a maximum s � t flow? If not give an augmenting path (write the nodes of
the path).

Solution:

Augmenting path (if no augmenting path exists write None): sCBADGt

Value you can augment with on path: 3

Question 2.2 (5%) Give a s� t minimum cut in the network N .

Solution:

Minimum cut (write the partition of the nodes): {s, C,B, F}, {A,D,E,H,G, t} or {s,A,B,C,E, F}, {D,G,H, t}

Value of the minimum cut: 19
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Question 3 (15%)

Paul loves pearls and has a lot of strings of pearls with pearls of di↵erent colors. Paul especially likes strings
of pearls that start and end in the same way. Let S be a string of pearls of length n. If the first i pearls
(i < n) and the last i pearls S are the same he says that the string of pearls has a pretty end of length i. More
formally, if S = p1p2 · · · pn then there is a pretty end of length i < n if and only p1 · · · pi = pn�i+1 · · · pn.
For example, the string of pearls

has two pretty ends: one of length 2 and one of length 5.

Question 3.1 (5%) Compute the length of all pretty ends of the string S = bbybbybbyb:

Solution:

S has pretty ends of length(s): 1, 4, 7

Question 3.2 (10%) Give an e�cient algorithm for computing the length of all pretty ends of a string S
of length n. Analyze the running time of your algorithm in terms of n and argue that it is correct.

Solution:
Construct the KMP automaton. Follow the failure pointers backwards from the accepting state. All states
reached corresponds to a pretty end.

Running time: O(n). It takes O(n) time to construct the automaton and O(n) time to follow the
failure pointers back.

Correctness: The first failure pointer we follow points to the longest prefix p1 of S that is a su�x
of S. Thus this is the longest pretty end of S. Now all other pretty ends are shorter and must therefore also
be su�xes of p1. The failure pointer from the state of p1 therefore points to the second longest pretty end
of S.
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Solution 3.2 continued:

The exam set continues on the next page 7
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Question 4 (26%)

Consider the following simple 2-player card game. At the beginning of the game, the n cards are dealt face
up in a long row. Each card is worth a di↵erent number of points. After all the cards are dealt, the players
take turns removing either the leftmost or rightmost card from the row, until all the cards are gone. At each
turn, you can decide which of the two cards to take. The winner of the game is the player that has collected
the most points when the game ends.

Question 4.1 (6%) Having never taken an algorithms class, your friend Donald follows the obvious greedy
strategy—when it’s his turn, Donald always takes the card with the higher point value.

Prove that you should not also use the greedy strategy when you play against Donald. That is, give an
example of a sequence where you can win, but only if you do not follow the same greedy strategy as Donald.

Solution:
Consider the sequence 10, 1, 100, 20.

If you start and use the greedy strategy you get 20 points in the first round. Now Donald pick 100,
you pick 10 and he picks 1. You get 30 and Donald gets 101. If you had picked 10 first, then Donald picks
20 and you can then pick 100 getting 110 points.

The exam set continues on the next page 8
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Question 4.2 (5%) Let R = [r1, r2, . . . , rn] be the row of cards, that is R[i] is the ith card from the left.
In this exercise we want to compute the maximum number of points that you can collect playing against
Donald.

Let L[i, j] be the maximum number of points that you can get if you play against Donald on the sequence
of cards R[i . . . j] if it is your turn first.

E.g. if R = [5, 3, 4, 7, 9, 1, 2, 6] then L[3, 5] = 13 as R[3 . . . 5] = [4, 7, 9] and you get 9 + 4 = 13 points if
you pick 9 in your first turn, but only 4 + 7 = 11 if you pick 4 first.

Fill out the table below for the row R = [7, 4, 3, 5, 6].

i \ j 1 2 3 4 5

1 7 7 10 11 15

2 4 4 8 10

3 3 5 9

4 5 6

5 6

Question 4.3 (5%) Which of the following recurrences correctly computes L[i, j]:

A L[i, j] =

8
>>>>>><

>>>>>>:

0 if i > j

R[i] if i = j

max{R[i], R[j]} if i+ 1 = j

R[i] + max{L[i+ 2, j], L[i, j � 1]} if R[i] > R[j] and i < j � 1

R[j] + max{L[i+ 1, j � 1], L[i, j � 2]} if R[i] < R[j] and i < j � 1

B L[i, j] =

8
>>>>>>>>>><

>>>>>>>>>>:

0 if i > j

R[i] if i = j

max{R[i], R[j]} if i+ 1 = j

max{R[i] + L[i+ 1, j � 1], R[j] + L[i, j � 2]} if R[i+ 1] < R[j � 1] < R[j] and i < j � 1

max{R[i] + L[i+ 1, j � 1], R[j] + L[i+ 1, j � 1]} if R[j � 1] < R[i+ 1] < R[j] and i < j � 1

max{R[i] + L[i+ 2, j], R[j] + L[i, j � 2]} if R[j � 1] < R[i] < R[i+ 1] and i < j � 1

max{R[i] + L[i+ 2, j], R[j] + L[i+ 1, j � 1]} if R[i] < R[j � 1] < R[i+ 1] and i < j � 1

C L[i, j] =

8
>>>>>>>><

>>>>>>>>:

0 if i > j

R[i] if i = j

max{R[i] + L[i+ 1, j � 1], R[j] + L[i, j � 2]} if R[i+ 1]  R[j], R[i]  R[j � 1] and i < j

max{R[i] + L[i+ 1, j � 1], R[j] + L[i+ 1, j � 1]} if R[i+ 1]  R[j], R[i] > R[j � 1] and i < j

max{R[i] + L[i+ 2, j], R[j] + L[i, j � 2]} if R[i+ 1] > R[j], R[i]  R[j � 1] and i < j

max{R[i] + L[i+ 2, j], R[j] + L[i+ 1, j � 1]} if R[i+ 1] > R[j], R[i] > R[j � 1] and i < j
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Question 4.3 (10%) Write pseudocode for an algorithm based on dynamic programming and the recur-
rence you chose in Question 4.2 that given a row R computes the maximum number of points you can
get playing against Donald if you take the first turn. Analyze the space usage and running time of your
algorithm in terms of n.

COMPUTE-MAXWEIGHT(R[1...n])
L := n⇥ n table
for i=1 to n do

L[i, i] := R[i]
for i = 1 to n do

L[i,i+1] = max(R[i],R[i+1])
for i = n downto 1 do

for j = i+2 to n do
if R[i+1]  R[j] and R[i]  R[j-1] do

L[i,j] := max(R[i] + L[i+1,j-1], R[j] + L[i,j-2])
else if R[i+1]  R[j] and R[i] > R[j-1] do

L[i,j] := max(R[i] + L[i+1,j-1], R[j] + L[i+1,j-1])
if R[i+1] < R[j] and R[i]  R[j-1] do

L[i,j] := max(R[i] + L[i+2,j], R[j] + L[i,j-2])
else if R[i+1] < R[j] and R[i] > R[j-1] do

L[i,j] := max(R[i] + L[i+2,j], R[j] + L[i+1,j-1])
end if

end for
end for
return L[1,n]

Solution:
Running time O(n2). Two for loops in linear time then two nested for-loops, where the body takes constant
time. Everything else takes constant time.
Spacec O(n2).
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Solution 4.3 continued:

The exam set continues on the next page 11



Exam 02110, E20 page 12 of 15 pages

Question 5 (18%)

The yearly light fest is coming up. Every year all n departments at the university puts di↵erent colored light
chains on a tree outside the department. Each department i needs k light chains of di↵erent colors and they
each have a list Li of the colors they want to use. Each department should get at most one light chain of
each color and they should only receive light chains that has a color that is on their list. Your friends are
in charge of distributing the light chains to the departments. The university has a limited number of light
chains cj of each color j and their job is to make all the departments happy. Suppose that k = 2, there are
n = 4 departments and m = 4 colors with c1 = c2 = c3 = c4 = 2, that is there are two light chains of each
color. The departments lists are L1 = L2 = {1, 2, 3} and L3 = L4 = {1, 3, 4}. Then one possible way to
distribute the light chains such that each department gets at least 2 light chains of di↵erent colors are:

• department 1 gets light chains of color c1 and c2,

• department 2 gets light chains of color c2 and c3,

• department 3 gets light chains of color c3 and c4,

• department 4 gets light chains of color c1 and c4,

Question 5.1 (10%)

Give an e�cient algorithm that takes as input the number of light chains of each color c1, c2, . . . , cm, the
lists Li for each of the n departments, and the parameter k, and decides whether there is a way to distribute
the light chains such that each department gets k light chains of di↵erent colors. Analyze the time and space
usage of your algorithm in terms of n, m, and k. Remember to argue that your algorithm is correct.

Solution:
Construct a flow network. A node uc for each color c and a node vd for each department d. There is an edge
from uc to vd of capacity one if and only if color c is on the list Ld. Construct a source node s with edges
to all nodes correspoding to colors. The capacity of the edge (s, ui) is set to ci (the number of light chains
of color i). Construct a sink node t with edges of capacity k from all nodes corresponding to departments.
Now it is possible to distribute the light chains such that each department get k light chains of di↵erent
colors if and only if there is a flow of value kn. We can use a max flow algorithm to solve the problem.

s

1

2

3

4 t

m

1

2

3

4

n

c1
c2
c3
c4

cm

k

k

k

k

k

1

1

1

Running time: |V | = m+ n+ 2. |E| = N +m+ n, where N =
Pn

i=1 |Li|  nm. The value of the maximum
flow  kn. FF: O(Nnk) = O(mn2k), EK: O(m2n2(m+n)). Scaling O(m2n2 logC), where C is the maximal
number of light chains of any color. We can assume this is at most n as we can otherwise just scale it down,
since each department only can get one of each color.
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Solution 5.1 continued:

The exam set continues on the next page 13
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Question 5.2 (8%)

You show your friends a solution computed by your algorithm from Question 5.1, and to your big surprise
they tell you that this solution is not at all feasible. It turns out that there are three di↵erent types of light
chains (star shaped, heart shaped and round) and no department should get light chains of only a single
type. Each color only comes in one shape (fx. are all the red light chains heart shaped), but every type is
made in many di↵erent colors. For example, suppose color 1 is star shaped, color 2 and 3 are heart shaped,
and color 4 is round. Then the solution from before does not work as department 2 only gets heart shaped
light chains. However, we could give both department 1 and 2 light chains of color 1 and 2, and department
3 and 4 light chains of color 3 and 4.

Give an e�cient algorithm that decides whether there exists a solution satisfying all the conditions from
Question 5.1, plus the new requirement about types. Analyze the time and space usage of your algorithm
in terms of n, m, and k. Remember to argue that your algorithm is correct.

Solution:
Use network from before, but add nodes as below. For each department node construct three type
nodes. From each of these three type nodes there is an edge to the department node with capacity k � 1.
The edges from the color nodes now go to the correct type nodes instead of the department nodes. That
is, if we had an edge from uc to vd and color c chains are of type i then the edge should go to type node i of vd.
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Solution 5.2 continued:
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