Amortized Analysis

Inge Li Gørtz

Today

- Amortized analysis
- Multipop-stack
- Incrementing a binary counter
- Dynamic tables

Dynamic tables

- Problem. Have to assign size of table at initialization.
- Goal. Only use space $\Theta(n)$ for an array with n elements.
- Applications. Stacks, queues, hash tables,....
- Can insert and delete elements at the end.

Dynamic tables

- First attempt.
- Insert:
- Create a new table of size $\mathrm{n}+1$.
- Move all elements to the new table.
- Delete old table.
- Size of table = number of elements
- Too expensive.
- Have to copy all elements to a new array each time.
- Insertion of N elements takes time proportional to: $1+2+\cdots \cdots+n=\Theta\left(n^{2}\right)$.
- Goal. Ensure size of array does not change to often.

Dynamic tables

- Doubling. If the array is full (number of elements equal to size of array) copy the elements to a new array of double size.

- Consequence. Insertion of n elements take time:
$\cdot \mathrm{n}+$ number of reinsertions $=\mathrm{n}+1+2+4+8+\cdots \cdot+2^{\log \mathrm{n}}<3 \mathrm{n}$.
- Space: $\Theta(n)$.

Example: Stack with MultiPop

- Stack with MultiPop.
- Push(e): push element e onto stack.
- MultiPop(k): pop top k elements from the stack
- Worst case: Implement via linked list or array.
- Push: O(1).
- MultiPop: O(k).
- Can prove total cost is no more than $2 n$.

Stack: Aggregate Analysis

- Amortized analysis. Sequence of n Push and MultiPop operations.
- Each object popped at most once for each time it is pushed.
- \#pops on non-empty stack \leq \#Push operations $\leq n$.
- Total time O(n).

Binary counter

Amortized Analysis

- Amortized analysis.
- Average running time per operation over a worst-case sequence of operations.
- Methods.
- Summation (aggregate) method
- Accounting (tax) method
- Potential method

Summation (Aggregate) method

- Summation.
- Determine total cost.
- Amortized cost = total cost/\#operations.
- Analysis of doubling strategy (without deletions):
- Total cost: $n+1+2+4+\ldots+2^{\log n}=\Theta(n)$.
- Amortized cost per insert: $\Theta(1)$.

Stack: Aggregate Analysis

- Amortized analysis. Sequence of n Push and MultiPop operations.
- Each object popped at most once for each time it is pushed.
- \#pops on non-empty stack \leq \#Push operations $\leq n$.
- Total time O(n).
- Amortized cost per operation: $2 \mathrm{n} / \mathrm{n}=2$.

Accounting method

- Accounting/taxation.
- Assign a cost to each type of operation that is different from actual cost.
- $c_{i}=$ cost of operation i
- $\hat{c}_{i}=$ amortized cost of operation i
- Need: $\quad \sum_{i=1}^{n} \hat{c}_{i} \geq \sum_{i=1}^{n} c_{i} \quad$ for any sequence of n operations.
- If $\hat{c}=c+x$, where $x>0$: Assign the extra credit with elements in the data structure.
- If $\hat{c}=c-x$, where $x>0$: Use x credits stored in the data structure.

Stack: Accounting Method

- Amortized analysis. Sequence of n Push and MultiPop operations.
- Pay 2 credits for each Push.
- Keep 1 credit on each element on the stack.
- Amortized cost per operation:
- Push: 2
- MultiPop: 1 (to pay for pop on empty stack).

Binary counter

Dynamic Tables: Accounting Method

- Analysis: Allocate 2 credits to each element when inserted.
- All elements in the array that is beyond the middle have 2 credits.
- Table not full: insert costs 1 , and we have 2 credits to save.
- table full, i.e., doubling: half of the elements have 2 credits each. Use these to pay for reinsertion of all in the new array.
- Amortized cost per operation: 3.

Dynamic tables with deletions

- Halving (first attempt). If the array is half full copy the elements to a new array of half the size.

- Consequence. The array is always between 50% and 100% full. But risk to use too much time (double or halve every time).

Dynamic tables

- Halving. If the array is a quarter full copy the elements to a new array of half the size.

- Consequence. The array is always between 25% and 100% full.

Potential method

- Potential method. Define a potential function for the data structure that is initially zero and always non-negative.
- Prepaid credit (potential) associated with the data structure (money in the bank).
- Ensure there is always enough "money in the bank" (non-negative potential).
- Amortized cost \hat{c}_{i} of an operation: actual cost c_{i} plus change in potential.
- $\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$
- Thus:

$$
\sum_{i}^{m} \hat{c}_{i}=\sum_{i}^{m}\left(c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right)
$$

Stack: Potential Method

- Amortized analysis. Sequence of n Push and MultiPop operations.
- $\Phi(S)=$ \#elements on the stack
- $S_{i}=$ stack after i th operation
- $\hat{c}_{i}=c_{i}+\Phi\left(S_{i}\right)-\Phi\left(S_{i-1}\right)$

- Amortized cost per operation:
- Push: $\quad \hat{c}_{i}=1+\Phi\left(S_{i}\right)-\Phi\left(S_{i-1}\right)=1+(s+1)-s=2$
- Pop: $\quad \hat{c}_{i}=1+\Phi\left(S_{i}\right)-\Phi\left(S_{i-1}\right)=1+(s-1)-s=0$
- Multipop(k): $\hat{c}_{i}=1+\Phi\left(S_{i}\right)-\Phi\left(S_{i-1}\right)=k+(s-k)-s=0$

Binary Counter

- Amortized analysis. Sequence of n increments.
- $\Phi(B)=\# 1$'s in the counter
- $B_{i}=$ binary counter after i th operation
- $\hat{c}_{i}=c_{i}+\Phi\left(B_{i}\right)-\Phi\left(B_{i-1}\right)$
- Amortized cost per increment: $t_{i}=\# 1$'s flipped to 0 in the i th operation.
- $c_{i}=t_{i}+1$
- $\Phi\left(B_{i}\right)-\Phi\left(B_{i-1}\right)=-t_{i}+1$
- $\hat{c}_{i}=t_{i}+1-t_{i}+1=2$

Dynamic tables

- Doubling. If the table is full (number of elements equal to size of array) copy the elements to a new array of double size.
- Halving. If the table is a quarter full copy the elements to a new array of half the size
- Potential function.
- $\Phi\left(D_{i}\right)= \begin{cases}2 n-L & \text { if } T \text { at least half full } \\ L / 2-n & \text { if } T \text { at less than half full }\end{cases}$
- $L=$ current array size, $n=$ number of elements in array.

Dynamic tables

- Doubling. If the table is full (number of elements equal to size of array) copy the elements to a new array of double size.
- Halving. If the table is a quarter full copy the elements to a new array of half the size
- Potential function.
- $\Phi\left(D_{i}\right)= \begin{cases}2 n-L & \text { if } T \text { at least half full } \\ L / 2-n & \text { if } T \text { at less than half full }\end{cases}$
- $\mathrm{L}=$ current array size, $\mathrm{n}=$ number of elements in array.
- Inserting when less than half full and still less than half full after insertion:

$$
n=7, L=16
$$

- amortized cost $=1+-{ }^{\omega}=0$

Dynamic tables

- Doubling. If the table is full (number of elements equal to size of array) copy the elements to a new array of double size.
- Halving. If the table is a quarter full copy the elements to a new array of half the size
- Potential function.
- $\Phi\left(D_{i}\right)= \begin{cases}2 n-L & \text { if } T \text { at least half full } \\ L / 2-n & \text { if } T \text { at less than half full }\end{cases}$
- $L=$ current array size, $n=$ number of elements in array.
- Inserting when less than half full before and half full after:

$$
n=8, L=16
$$

- amortized cost $=1+$ - 尚 $=0$

Dynamic tables

- Doubling. If the table is full (number of elements equal to size of array) copy the elements to a new array of double size.
- Halving. If the table is a quarter full copy the elements to a new array of half the size
- Potential function.
- $\Phi\left(D_{i}\right)= \begin{cases}2 n-L & \text { if } T \text { at least half full } \\ L / 2-n & \text { if } T \text { at less than half full }\end{cases}$
- $L=$ current array size, $n=$ number of elements in array.
- Inserting when at least half full, but not full:

$$
n=12, L=16
$$

- amortized cost $=1+$ 曾 $=3$

Dynamic tables

－Doubling．If the table is full（number of elements equal to size of array）copy the elements to a new array of double size．
－Halving．If the table is a quarter full copy the elements to a new array of half the size
－Potential function．
－$\Phi\left(D_{i}\right)= \begin{cases}2 n-L & \text { if } T \text { at least half full } \\ L / 2-n & \text { if } T \text { at less than half full }\end{cases}$
－ $\mathrm{L}=$ current array size， $\mathrm{n}=$ number of elements in array．
－Inserting in full table and doubling

$$
n=9, L=16
$$

| $x\|x\| x\|x\| x\|x\| x \mid$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

－ amortized cost $=9+$－曾曾尚尚 $=3$

Dynamic tables

－Doubling．If the table is full（number of elements equal to size of array）copy the elements to a new array of double size．
－Halving．If the table is a quarter full copy the elements to a new array of half the size
－Potential function．
－$\Phi\left(D_{i}\right)= \begin{cases}2 n-L & \text { if } T \text { at least half full } \\ L / 2-n & \text { if } T \text { at less than half full }\end{cases}$
－$L=$ current array size，$n=$ number of elements in array．
－Deleting in a quarter full table and halving

$$
n=3, L=8
$$

－amortized cost $=3+$－光尚光 $=0$

Dynamic tables

- Doubling. If the table is full (number of elements equal to size of array) copy the elements to a new array of double size.
- Halving. If the table is a quarter full copy the elements to a new array of half the size
- Potential function.
- $\Phi\left(D_{i}\right)= \begin{cases}2 n-L & \text { if } T \text { at least half full } \\ L / 2-n & \text { if } T \text { at less than half full }\end{cases}$
- $\mathrm{L}=$ current array size, $\mathrm{n}=$ number of elements in array.
- Deleting when more than half full (still half full after): $n=11, L=16$
- amortized cost $=1+-\frac{\text { 曾 }}{\text { en }}=-1$

Dynamic tables

- Doubling. If the table is full (number of elements equal to size of array) copy the elements to a new array of double size.
- Halving. If the table is a quarter full copy the elements to a new array of half the size
- Potential function.
- $\Phi\left(D_{i}\right)= \begin{cases}2 n-L & \text { if } T \text { at least half full } \\ L / 2-n & \text { if } T \text { at less than half full }\end{cases}$
- $L=$ current array size, $n=$ number of elements in array.
- Deleting when half full (not half full after):

$$
n=7, L=16
$$

- amortized cost = $1+$ 尚 $=2$

Dynamic tables

- Doubling. If the table is full (number of elements equal to size of array) copy the elements to a new array of double size.
- Halving. If the table is a quarter full copy the elements to a new array of half the size
- Potential function.
- $\Phi\left(D_{i}\right)= \begin{cases}2 n-L & \text { if } T \text { at least half full } \\ L / 2-n & \text { if } T \text { at less than half full }\end{cases}$
- $L=$ current array size, $n=$ number of elements in array.
- Deleting in when less than half full (but still a quarter full after):

$$
n=7, L=16
$$

- amortized cost $=1+$ 光 $=2$

Potential Method

- Summary:

1. Pick a potential function, Φ, that will work (art).
2. Use potential function to bound the amortized cost of the operations you're interested in.
3. Show $\Phi\left(D_{i}\right) \geq 0$ for all i.

- Techniques to find potential functions: if the actual cost of an operation is high, then decrease in potential due to this operation must be large, to keep the amortized cost low.

