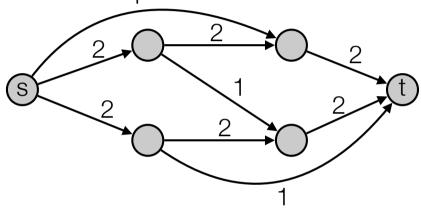
Inge Li Gørtz

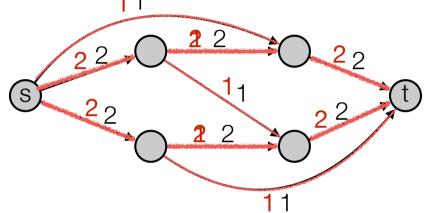
Applications

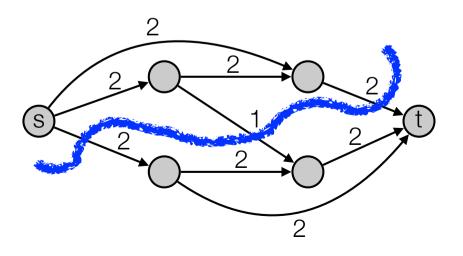
- Matchings
- Job scheduling
- Image segmentation
- Baseball elimination
- Disjoint paths
- Survivable network design

Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.



- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
 - Solution 1: 4 trucks
 - Solution 2: 5 trucks
- Example 2:
 - 5 trucks (need to cross river).





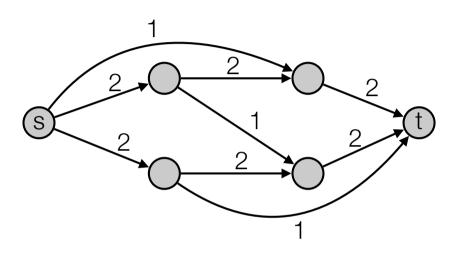
- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - s has no edges in and t has no edges out.
 - Every edge (e) has a (integer) capacity $c(e) \ge 0$.
 - Flow:
 - capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.
 - flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

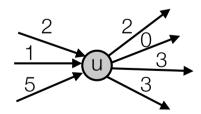
$$\sum_{v:(v,u)\in E} f(v,u) = \sum_{v:(u,v)\in E} f(u,v)$$

• Value of flow f is the sum of flows out of s:

$$v(f) = \sum_{v:(s,v)\in E} f(e) = f^{out}(s)$$

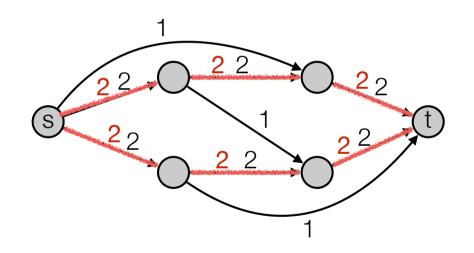
· Maximum flow problem: find s-t flow of maximum value





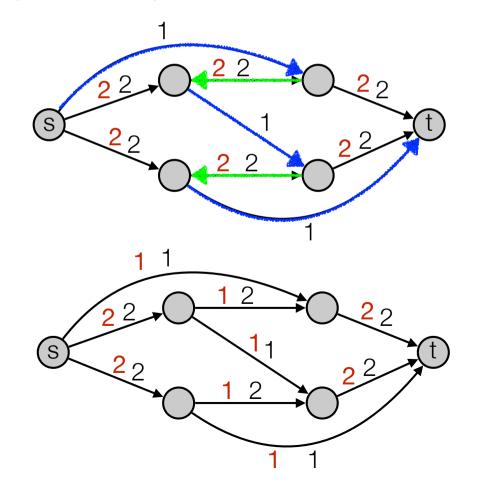
Algorithm

• Find path where we can send more flow.



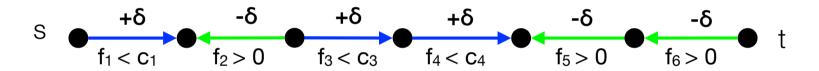
Algorithm

- Find path where we can send more flow.
- Send flow back (cancel flow).

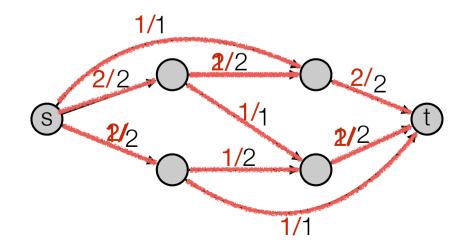


Augmenting Paths

- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

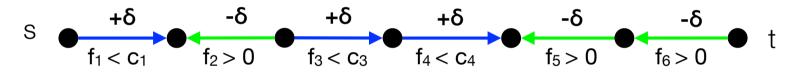


• Can add extra flow: $min(c_1 - f_1, f_2, c_3 - f_3, c_4 - f_4, f_5, f_6) = \delta = bottleneck(P)$.



Augmenting Paths

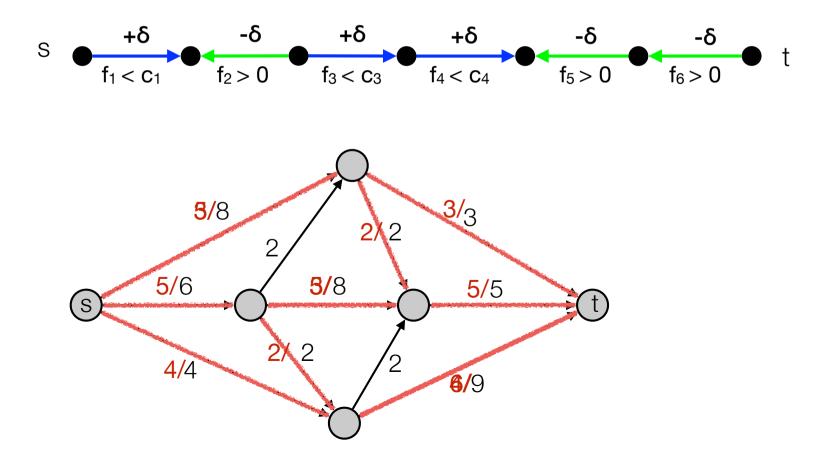
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow



- Can add extra flow: $min(c_1 f_1, f_2, c_3 f_3, c_4 f_4, f_5, f_6) = \delta = bottleneck(P)$.
- Ford-Fulkerson:
 - Find augmenting path, use it
 - Find augmenting path, use it
 - Find augmenting path, use it
 - •

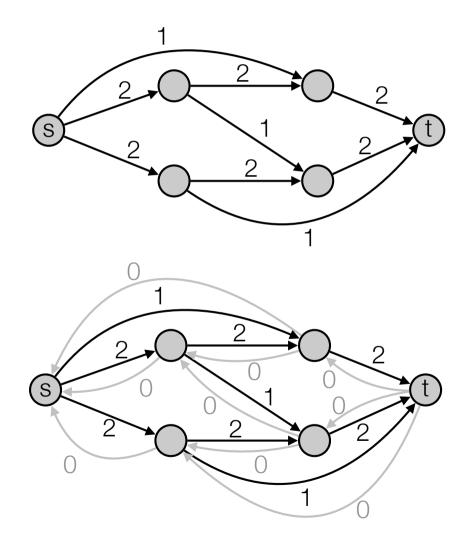
Ford Fulkerson

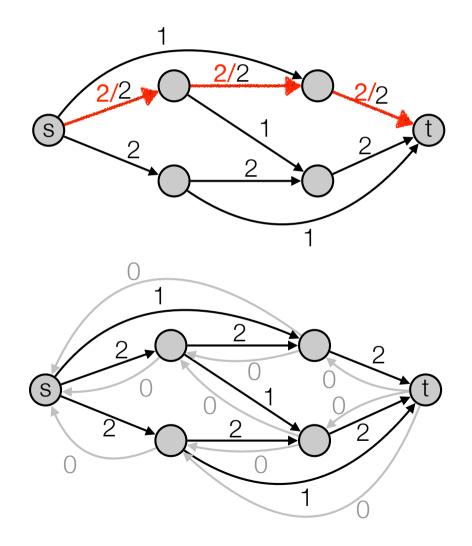
- Augmenting path: s-t path P where
 - forward edges have leftover capacity
 - backwards edges have positive flow

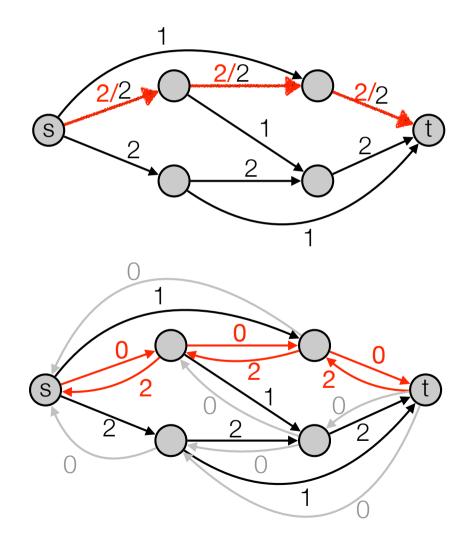


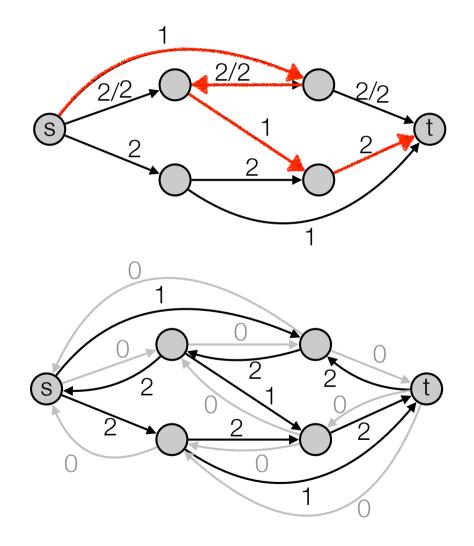
Analysis of Ford-Fulkerson

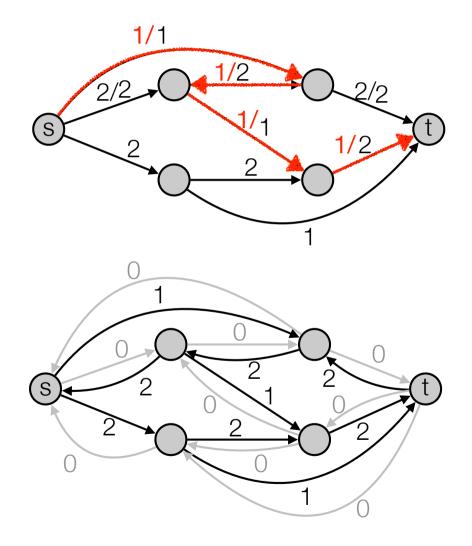
- Integral capacities implies theres is a maximum flow where all flow values f(e) are integers.
- Number of iterations:
 - Always increment flow by at least 1: #iterations ≤ max flow value f*
- Time for one iteration:
 - Can find augmenting path in linear time: One iteration takes O(m) time.
- Total running time = $O(|f^*| m)$.

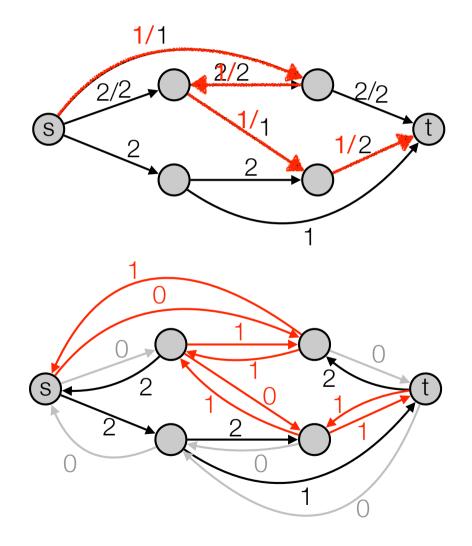


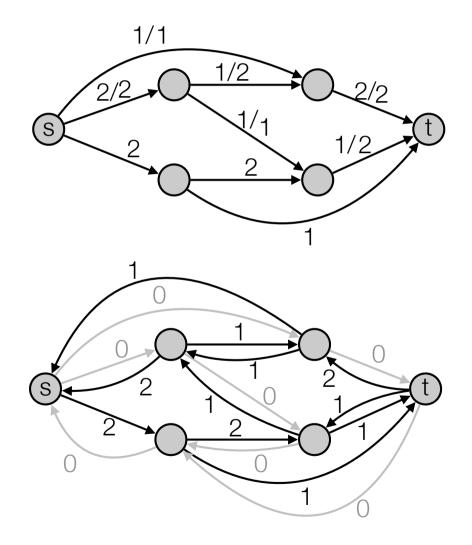




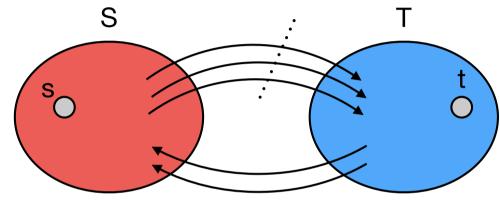




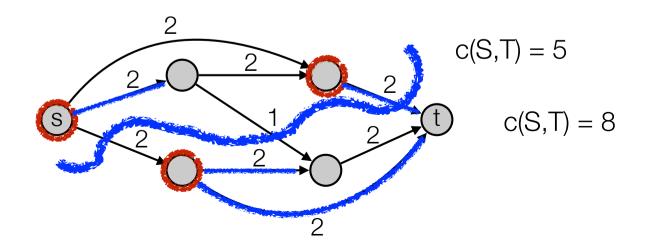




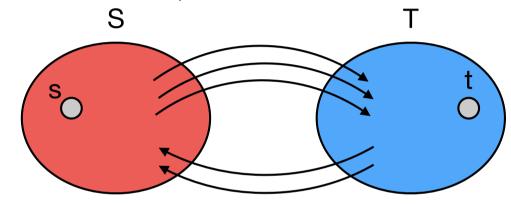
• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

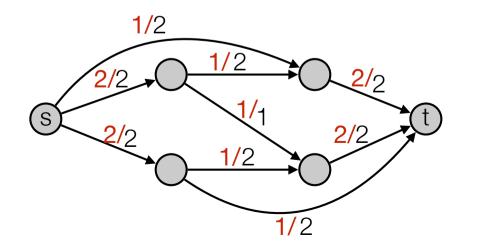


• Capacity of cut: total capacity of edges going *from* S to T.

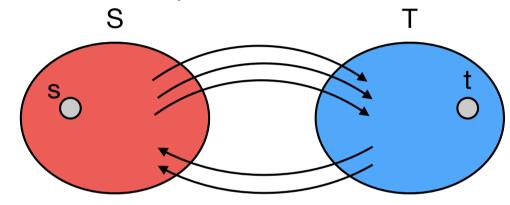


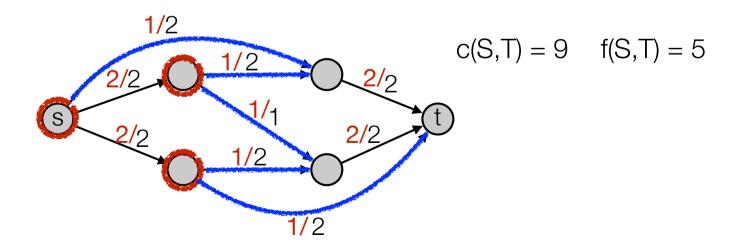
• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.



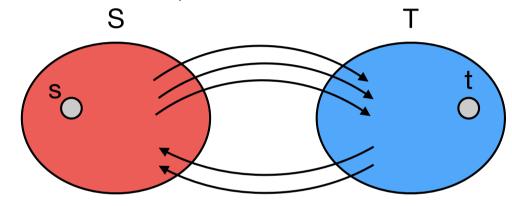


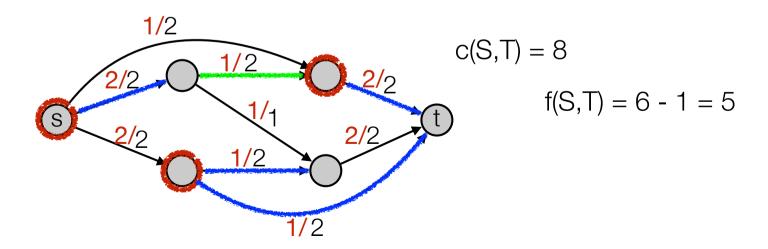
• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.



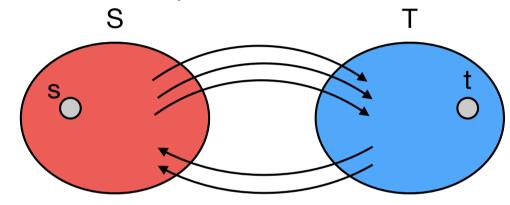


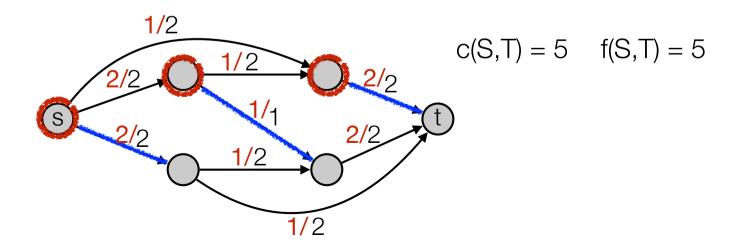
• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.



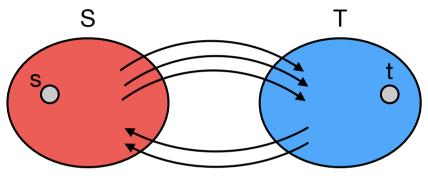


• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.

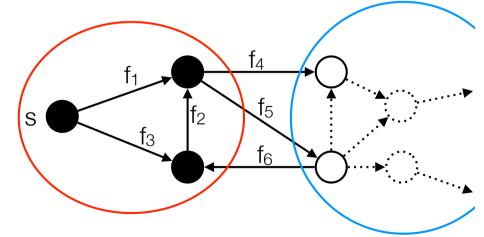




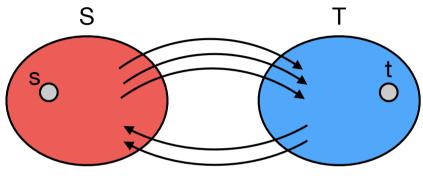
• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.



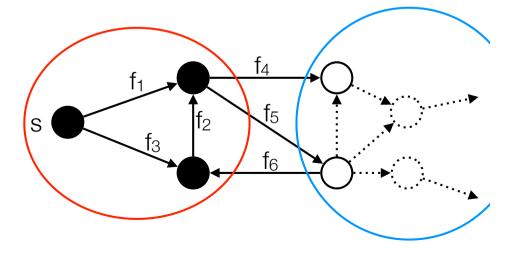
- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut: $f_4 + f_5 f_6 = ?$
 - $f_4 + f_5 f_1 f_2 = 0$
 - $f_2 f_6 f_3 = 0$
 - $f_1 + f_3 = |f|$
 - $(f_4 + f_5 f_1 f_2) + (f_2 f_6 f_8) + (f_1 + f_8) = |f|$
 - $f_4 + f_5 f_6 = |f|$
- Flow across cut is |f| for all cuts => flow out of s = flow into t.



• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.



- Flow across cut is |f| for all cuts => flow out of s = flow into t.
- $|f| \le c(S,T)$:
 - $|f| = f_4 + f_5 f_6 \le f_4 + f_5 \le c_4 + c_5 = c(S,T)$



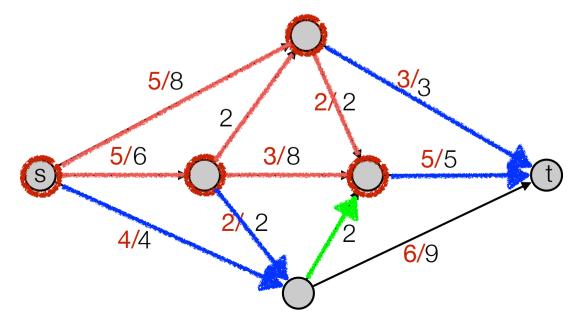
• Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T$.



- Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
 maximum flow and (S,T) is a minimum cut.
 - Let f* be the maximum flow and the (S*,T*) minimum cut:
 - $\bullet \ \left|f\right| \leq \left|f^{\star}\right| \leq c(S^{\star},T^{\star}) \leq c(S,T).$
 - Since |f| = c(S,T) this implies $|f| = |f^*|$ and $c(S,T) = c(S^*,T^*)$.

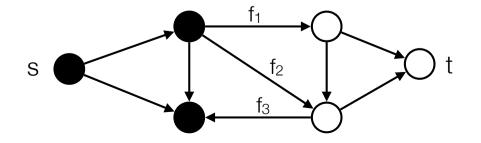
Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - Let S be all vertices to which there exists an augmenting path from s.
 - All forward edges in the minimum cut are "full" (flow = capacity).
 - All backwards edges in minimum cut have 0 flow.
 - => value of flow (S,T) = capacity of the cut.



Use of Max-flow min-cut theorem

- There is no augmenting path <=> f is a maximum flow.
 - f maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.
 - no augmenting path => f maximum flow
 - no augmenting path => exists cut (S,T) where |f| = c(S,T):
 - Let S be all vertices to which there exists an augmenting path from s.
 - t not in S (since there is no augmenting s-t path).
 - Edges from S to T: $f_1 = c_1$ and $f_2 = c_2$.
 - Edges from T to S: $f_3 = 0$.
 - => $|f| = f_1 + f_2 f_3 = f_1 + f_2 = c_1 + c_2 = c(S,T)$.
 - => f a maximum flow and (S,T) a minimum cut.



Removing assumptions

• Edges into s and out of t:

$$v(f) = f^{out}(s) - f^{in}(s)$$

• Capacities not integers.

• Multiple sources and sinks:

