Network Flows

Inge Li Gørtz

Network Flow

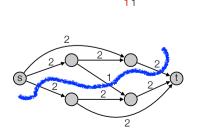
• Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.

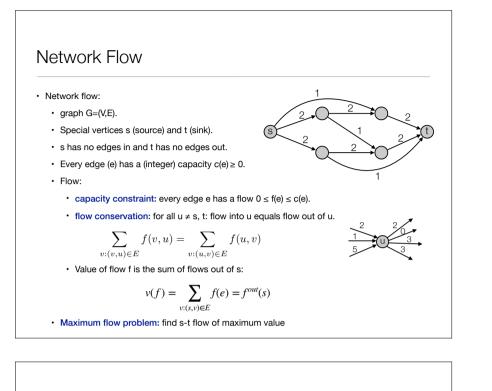
Applications

- Matchings
- Job scheduling
- Image segmentation
- Baseball elimination
- Disjoint paths
- Survivable network design

Network Flow

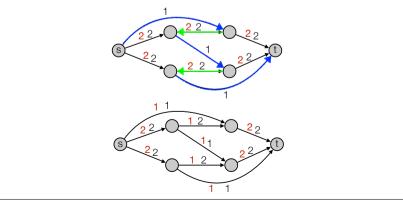
- Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.
- Example 1:
 - Solution 1: 4 trucks
 - Solution 2: 5 trucks
- Example 2:
 - 5 trucks (need to cross river).

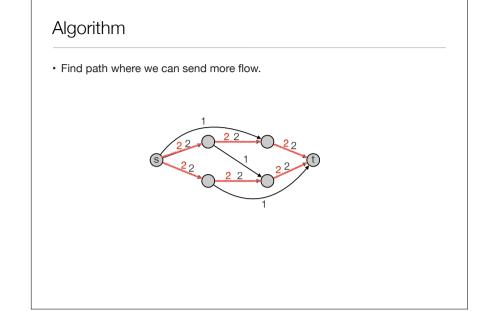




Algorithm

- Find path where we can send more flow.
- · Send flow back (cancel flow).



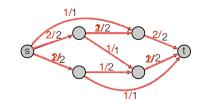


Augmenting Paths

- · Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

S
$$+\delta$$
 $f_1 < c_1$ $f_2 > 0$ $f_3 < c_3$ $f_4 < c_4$ $f_5 > 0$ $f_6 > 0$ t

• Can add extra flow: min(c₁ - f₁, f₂, c₃ - f₃, c₄ - f₄, f₅, f₆) = δ = bottleneck(P).



Augmenting Paths

- · Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - · backwards edges have positive flow

- Can add extra flow: min(c₁ f₁, f₂, c₃ f₃, c₄ f₄, f₅, f₆) = δ = bottleneck(P).
- Ford-Fulkerson:

•

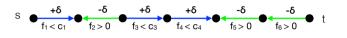
- · Find augmenting path, use it
- · Find augmenting path, use it
- · Find augmenting path, use it

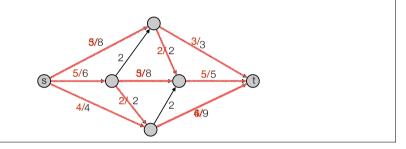
Analysis of Ford-Fulkerson

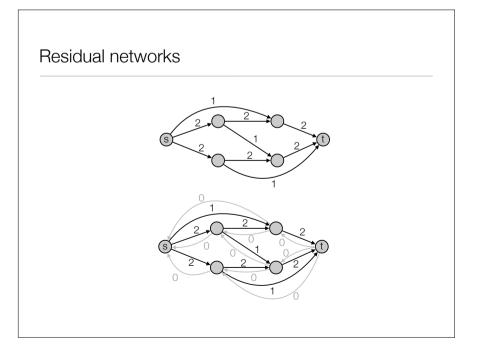
- Integral capacities implies theres is a maximum flow where all flow values f(e) are integers.
- · Number of iterations:
 - Always increment flow by at least 1: #iterations ≤ max flow value f*
- Time for one iteration:
 - Can find augmenting path in linear time: One iteration takes O(m) time.
- Total running time = O(|f*| m).

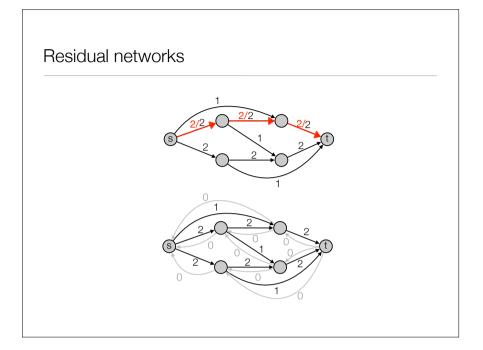
Ford Fulkerson

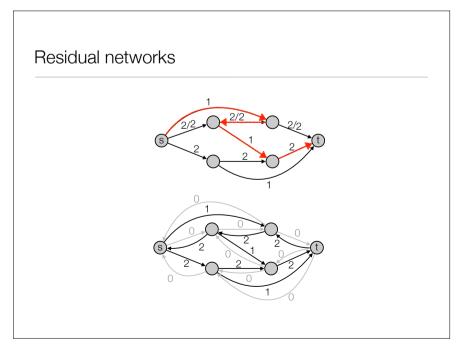
- Augmenting path: s-t path P where
 - · forward edges have leftover capacity
 - backwards edges have positive flow

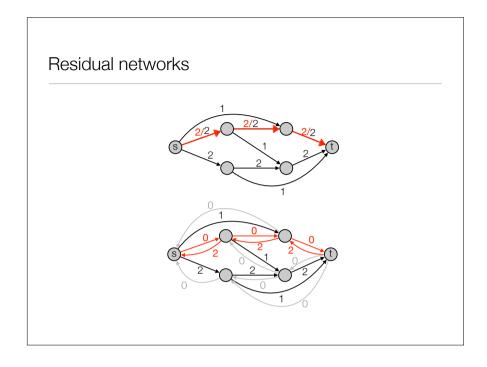


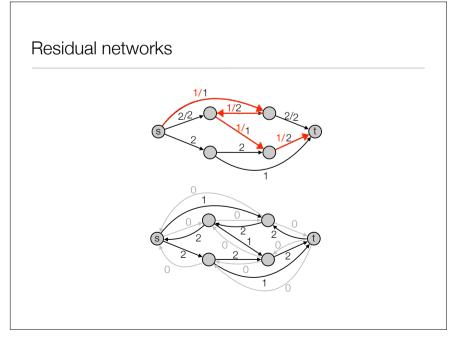


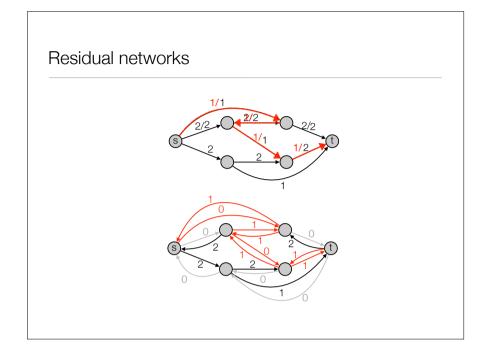


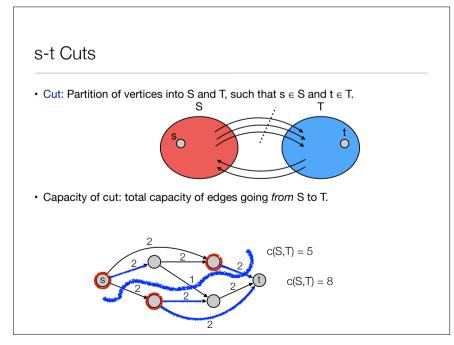


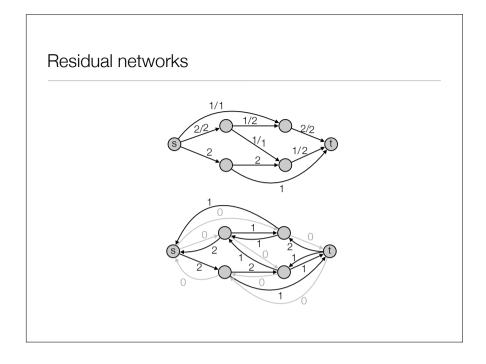


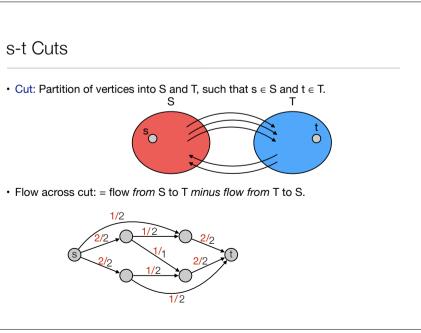


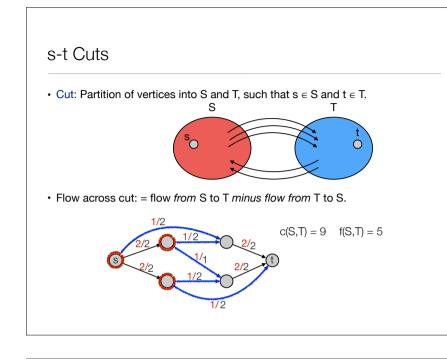


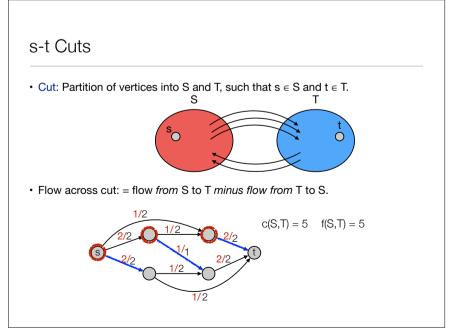


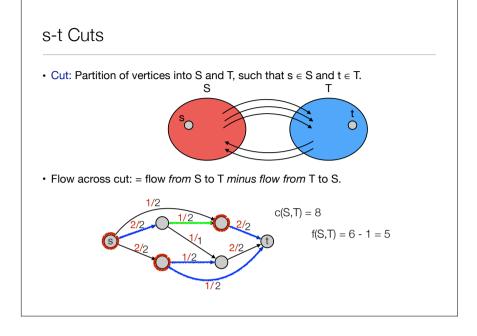


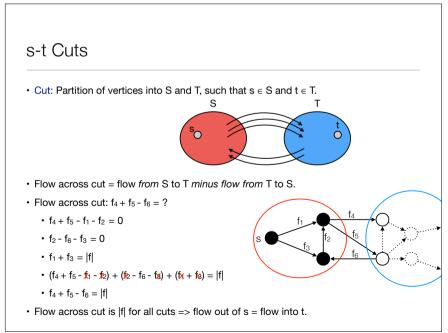


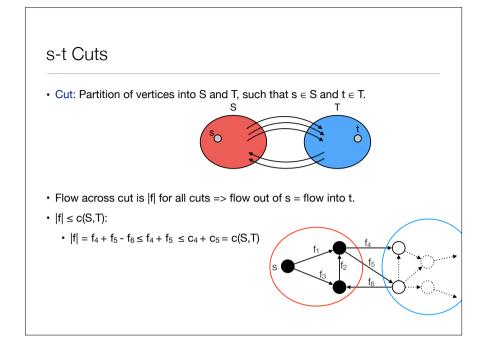






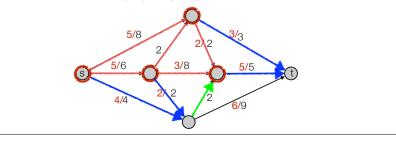






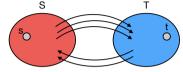
Finding minimum cuts

- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
 - · Let S be all vertices to which there exists an augmenting path from s.
 - All forward edges in the minimum cut are "full" (flow = capacity).
 - All backwards edges in minimum cut have 0 flow.
 - => value of flow (S,T) = capacity of the cut.



s-t Cuts

- Cut: Partition of vertices into S and T, such that $s \in S$ and $t \in T.$

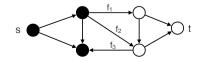


- Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
 maximum flow and (S,T) is a minimum cut.
 - Let f^* be the maximum flow and the (S^*,T^*) minimum cut:
 - $\bullet \ \left|f\right| \leq \left|f^{\star}\right| \leq c(S^{\star},T^{\star}) \leq c(S,T).$
 - Since |f| = c(S,T) this implies $|f| = |f^*|$ and $c(S,T) = c(S^*,T^*)$.

Use of Max-flow min-cut theorem

• There is no augmenting path <=> f is a maximum flow.

- f maximum flow => no augmenting path:
 - Show that exists augmenting path => f not maximum flow.
- no augmenting path => f maximum flow
 - no augmenting path => exists cut (S,T) where |f| = c(S,T):
 - · Let S be all vertices to which there exists an augmenting path from s.
 - t not in S (since there is no augmenting s-t path).
 - Edges from S to T: $f_1 = c_1$ and $f_2 = c_2$.
 - Edges from T to S: $f_3 = 0$.
 - $\bullet \; => |f| = f_1 + f_2 f_3 = f_1 + f_2 = c_1 + c_2 = c(S,T).$
 - => f a maximum flow and (S,T) a minimum cut.



Removing assumptions

• Edges into s and out of t:

$$v(f) = f^{out}(s) - f^{in}(s)$$

Capacities not integers.

