Randomized algorithms II
Inge Li Gørtz

Randomized algorithms

- Last week
- Contention resolution
- Global minimum cut
- Today
- Expectation of random variables
- Guessing cards
- Hash functions and hash tables

Random variables
A random variable is an entity that can assume different values

- The values are selected "randomly"; i.e., the process is governed by a probability distribution

Examples: Let X be the random variable "number shown by dice".

- X can take the values $1,2,3,4,5,6$
- If it is a fair dice then the probability that $X=1$ is $1 / 6$:
- $\operatorname{Pr}[X=1]=1 / 6$.
- $\operatorname{Pr}[X=2]=1 / 6$.
- ...

Expected values

- Let X be a random variable with values in $\left\{x_{1}, \ldots x_{n}\right\}$, where x_{i} are numbers.
- The expected value (expectation) of X is defined as

$$
E[X]=\sum_{j=1}^{n} x_{j} \cdot \operatorname{Pr}\left[X=x_{j}\right]
$$

- The expectation is the theoretical average.

- Example:

- $X=$ random variable "number shown by dice"

$$
E[X]=\sum_{j=1}^{6} j \cdot \operatorname{Pr}[X=j]=(1+2+3+4+5+6) \cdot \frac{1}{6}=3.5
$$

Waiting for a first succes

Coin flips. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?

- Probability of $X=j$? (first succes is in round j)

$$
\operatorname{Pr}[X=j]=(1-p)^{j-1} \cdot p
$$

Expected value of X :

$$
\begin{aligned}
E[X]=\sum_{j=1}^{\infty} j \cdot \operatorname{Pr}[X=j] & =\sum_{j=1}^{\infty} j \cdot(1-p)^{j-1} \cdot p=\frac{p}{1-p} \sum_{j=1}^{\infty} j \cdot(1-p)^{j} \\
& =\frac{p}{1-p} \cdot \frac{1-p}{p^{2}}=\frac{1}{p}
\end{aligned}
$$

$$
\sum_{k=0}^{\infty} k \cdot x^{k}=\frac{x}{(1-x)^{2}} \quad \text { for } \quad x<1
$$

Guessing cards

- Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card
- Memoryless guessing. Can't remember what's been turned over already. Guess a card from full deck uniformly at random.
- Claim. The expected number of correct guesses is 1 .
- $X_{i}=1$ if $i^{\text {th }}$ guess correct and zero otherwise.
- $X=$ the correct number of guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 / n$.
- $E[X]=E\left[X_{1}+\cdots+X_{n}\right]=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]=1 / n+\cdots+1 / n=1$.

Guessing cards

- Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.
- Guessing with memory. Guess a card uniformly at random from cards not yet seen.
- Claim. The expected number of correct guesses is $\Theta(\log n)$.
- $X_{i}=1$ if $i^{\text {th }}$ guess correct and zero otherwise.
- $X=$ the correct number of guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$.
- $E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]=1 / n+\cdots+1 / 2+1 / 1=H_{n}$.

Coupon collector

- Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons.
Assuming all boxes are equally likely to contain each coupon, how many boxes before you have at least 1 coupon of each type?
- Claim. The expected number of steps is $\Theta(n \log n)$.
- Phase $j=$ time between j and $j+1$ distinct coupons.
- $X_{j}=$ number of steps you spend in phase j.
- $X=$ number of steps in total $=X_{0}+X_{1}+\cdots+X_{n-1}$.
- $E\left[X_{j}\right]=n /(n-j)$.
- The expected number of steps:

$$
E[X]=E\left[\sum_{j=0}^{n-1} X_{j}\right]=\sum_{j=0}^{n-1} E\left[X_{j}\right]=\sum_{j=0}^{n-1} n /(n-j)=n \cdot \sum_{i=1}^{n} 1 / i=n \cdot H_{n} .
$$

Dictionaries

Dictionary problem. Maintain a dynamic set of $\mathrm{S} \subseteq \mathrm{U}$ subject to the following operations

- Lookup(x): return true if $x \in S$ and false otherwise
- Insert(x): Set S = S $\cup\{x\}$
- Delete(x): Set S = S $\backslash\{x\}$

Universe size. Typically |U| = 2^64 and |S| << |U|

- Satellite information. Information associated with each element.
- Goal. A compact data structure with fast operations.
- Applications. Many! A key component in other data structures and algorithms.

Chained Hashing

- Chained hashing [Dumey 1956].
- $\mathrm{n}=|\mathrm{S}|$.
- Hash function. Pick some crazy, chaotic, random function h that maps U to $\{0, \ldots, m-1\}$, where $m=\Theta(n)$.
- Initialise an array $\mathrm{A}[0, \ldots, \mathrm{~m}-1]$.
- $A[i]$ stores a linked list containing the keys in S whose hash value is i.

Chained Hashing with Random Hash Function

- Expected length of the linked list for $\mathrm{h}(\mathrm{x})$?
- Random variable $L_{x}=$ length of linked list for $\mathrm{x} . \quad L_{x}=\{y \in S \mid h(y)=h(x)\}$
- Indikator random variable:

$$
I_{y}=\left\{\begin{array}{ll}
1 & \text { if } h(x)=h(y) \\
0 & \text { otherwise }
\end{array} \quad L_{x}=\sum_{y \in S} I_{y} \quad E\left[I_{y}\right]=\operatorname{Pr}[h(y)=h(x)]=\frac{1}{m} \text { for } x \neq y .\right.
$$

- The expected length of the linked list for x :

$$
E\left[L_{x}\right]=E\left[\sum_{y \in S} I_{y}\right]=\sum_{y \in S} E\left[I_{y}\right]=1+\sum_{y \in S \backslash\{x\}} \frac{1}{m}=1+(n-1) \cdot \frac{1}{m}=\Theta(1) .
$$

Uniform random hash functions

- E.g. $h(x)=x \bmod 11$. Not crazy, chaotic, random.
- Suppose $|\mathrm{U}| \geq \mathrm{n}^{2}$: For any hash function h there will be a set S of n elements that all map to the same position!
=> we end up with a single linked list.
- Solution: randomization.
- For every element $u \in U$: select $h(u)$ uniformly at random in $\{0, \ldots, m-1\}$ independently from all other choices.
- Claim. The probability that $h(u)=h(v)$ for two elements $u \neq v$ is $1 / m$.
- Proof.
- m^{2} possible choices for the pair of values $(\mathrm{h}(\mathrm{u}), \mathrm{h}(\mathrm{v}))$. All equally likely.
- Exactly m of these gives a collision.

Chained Hashing with Random Hash Function

- Constant time and $O(n)$ space for the hash table.

But:

- Need $\mathrm{O}(|\mathrm{U}|)$ space for the hash function.
- Need a lot of random bits to generate the hash function.
- Need a lot of time to generate the hash function.
- Do we need a truly random hash function?
- When did we use the fact that h was random in our analysis?

Chained Hashing with Random Hash Function

- Expected length of the linked list for $h(x)$?
- Random variable $L_{x}=$ length of linked list for $\mathrm{x} . \quad L_{x}=\{y \in S \mid h(y)=h(x)\}$
- Indikator random variable:

$$
I_{y}=\left\{\begin{array}{ll}
1 & \text { if } h(x)=h(y) \\
0 & \text { otherwise }
\end{array} \quad L_{x}=\sum_{y \in S} I_{y} \quad E\left[I_{y}\right]=\operatorname{Pr}[h(y)=h(x)]=\frac{1}{m} \text { for } x \neq y .\right.
$$

- The expected length of the linked list for x :

$$
E\left[L_{x}\right]=E\left[\sum_{y \in S} I_{y}\right]=\sum_{y \in S} E\left[I_{y}\right]=1+\sum_{y \in S \backslash\{x\}} \frac{1}{m}=1+(n-1) \cdot \frac{1}{m}=\Theta(1) .
$$

Universal Hashing

Positional number systems. For integers x and b , the base-r representation of x is x written in base b.

- Example.
- $(10)_{10}=(1010)_{2}\left(1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}\right)$
$\cdot(107)_{10}=(212)_{7}\left(2 \cdot 7^{2}+1 \cdot 7^{1}+2 \cdot 7^{0}\right)$

Universal hash functions

- Universal hashing [Carter and Wegman 1979]
- Let H be a family of functions mapping U to the set $\{0, \ldots, m-1\}$
- H is universal if for any $x, y \in U$, where $x \neq y$, and h chosen uniformly at random in H,

$$
\operatorname{Pr}[h(x)=h(y)] \leq 1 / m .
$$

Require that any $h \in H$ can be represented compactly and that we can compute the value $h(u)$ efficiently for any $u \in U$.

Universal Hashing

-Hash function. Given a prime p and $\mathrm{a}=\left(\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{r}}\right)_{\mathrm{p}}$, define

$$
h_{a}\left(\left(x_{1} x_{2} \ldots x_{r}\right)_{p}\right)=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{r} x_{r} \bmod p
$$

Example

- $\mathrm{p}=7$
- $\mathrm{a}=(107)_{10}=(212)_{7}$
- $\mathrm{x}=(214)_{10}=(424)_{7}$
- $\mathrm{h}_{\mathrm{a}}(\mathrm{x})=2 \cdot 4+1 \cdot 2+2 \cdot 4 \bmod 7=18 \bmod 7=4$
- Universal family.
- $H=\left\{h_{a}\left(a_{1} a_{2} \ldots a_{r}\right)_{p} \in\{0, \ldots, p-1\}^{r}\right\}$
- Choose random hash function from $\mathrm{H} \sim$ choose random a
- H is universal (analysis next).
- $O(1)$ time evaluation.
- O(1) space.
- Fast construction

Uniform Hashing

- Lemma 1. For any prime p, any integer $z \neq 0 \bmod p$, and any two integers α, β :

$$
\alpha z=\beta z \bmod p \quad \Rightarrow \quad \alpha=\beta \bmod p
$$

Proof.

- Show $(\alpha-\beta)$ is divisible by p :
- $\alpha z=\beta z \bmod p \quad \Rightarrow \quad(\alpha-\beta) z=0 \bmod p$.
- By assumption z not divisible by p.
- Since p is prime $\alpha-\beta$ must be divisible by p.
- Thus $\alpha=\beta \bmod p$ as claimed.

Universal Hashing

- Goal. For random $a=\left(a_{1} a_{2} \ldots a_{r}\right)_{p}$, show that if $x \neq y$ then $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / p$.
- Recall: $x=\left(x_{1} x_{2} \ldots x_{r}\right)_{p}$ and $y=\left(y_{1} y_{2} \ldots y_{r}\right)_{p}$:

$$
x \neq y \Leftrightarrow\left(x_{1} x_{2} \ldots x_{r}\right)_{p} \neq\left(y_{1} y_{2} \ldots y_{r}\right)_{p} \Rightarrow x_{j} \neq y_{j} \text { for some } j .
$$

Lemma 2. Let j be such that $x_{j} \neq y_{j}$. Assume the coordinates a_{i} have been chosen for all $i \neq j$. The probability of choosing a_{j} such that $h_{a}(x)=h_{a}(y)$ is $1 / p$.

- $h_{a}(x)=h_{a}(y)$

$$
\Leftrightarrow \quad \sum_{i=1}^{r} a_{i} x_{i} \bmod p=\sum_{i=1}^{r} a_{i} x y_{i} \bmod p
$$

There is exactly one value $0 \leq a_{j}<p$ that satisfies $a_{j} z=c \bmod p$.

- Assume there was two such values a_{j} and a_{j}^{\prime}.

. Then $a_{j} z=a_{j}^{\prime} z \bmod p$.
- Lemma $1 \Rightarrow a_{j}=a_{j}^{\prime} \bmod p$. Since $a_{j}<p$ and $a_{j}^{\prime}<p$ we have $a_{j}=a_{j}^{\prime}$.
- Probability of choosing a_{j} such that $h_{a}(x)=h_{a}(y)$ is $1 / p$.

Dictionaries

Theorem. We can solve the dictionary problem (without special assumptions) in

- $\mathrm{O}(\mathrm{n})$ space.
- O(1) expected time per operation (lookup, insert, delete).

Universal Hashing

Other universal families.

- For prime $\mathrm{p}>0$.
$h_{a, b}(x)=a x \bmod p$
$H=\left\{h_{a, b} \mid a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}\right\}$.
- Hash function from k-bit numbers to l-bit numbers.
$h_{a}(x)=\left(a x \bmod 2^{k}\right) \gg(k-l)$ $H=\left\{h_{a} \mid a\right.$ is an odd integer in $\left.\left\{1, \ldots, 2^{k}-1\right\}\right\}$

