String Matching

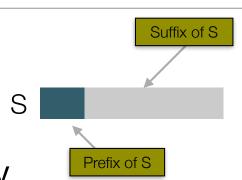
Inge Li Gørtz

String Matching

- String matching problem:
 - string T (text) and string P (pattern) over an alphabet Σ .
 - |T| = n, |P| = m.
 - Report all starting positions of occurrences of P in T.

Strings

- ε: empty string
- prefix/suffix: v=xy:
 - x prefix of v, if $y \neq \varepsilon x$ is a proper prefix of v
 - y suffix of v, if $y \neq \varepsilon x$ is a proper suffix of v.
- Example: S = aabca
 - The suffixes of S are: aabca, abca, bca, ca and a.
 - The strings abca, bca, ca and a are proper suffixes of S.



String Matching

Knuth-Morris-Pratt (KMP)

• Finite automaton

A naive string matching algorithm

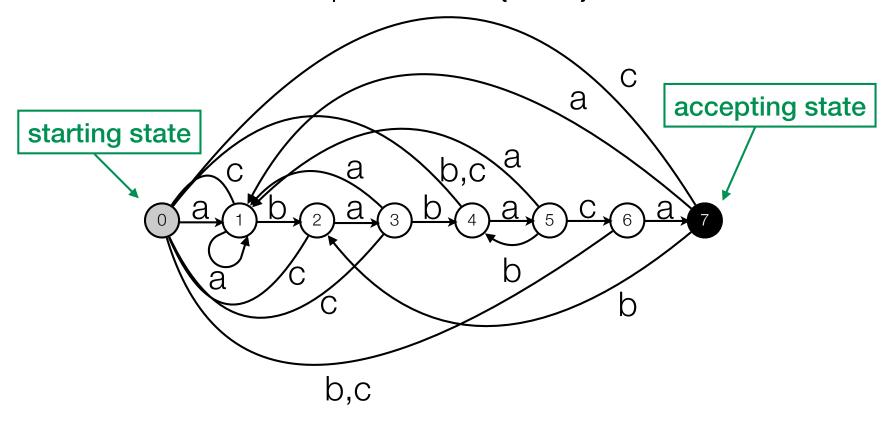
```
c b a b a b a b a c a b
ababaca
 ababaca
  ababaca
   ababaca
    ababaca
      ababaca
       ababaca
        ababaca
          ababaca
           ababaca
```

Improving the naive algorithm

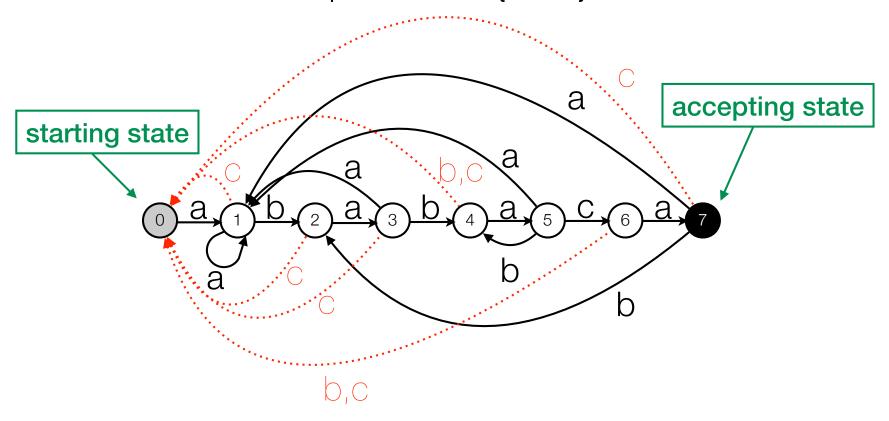
Exploiting what we know from pattern

```
P = ababaca
T = a b a b a a X
    ababaca
                         How much should we shift the pattern?
    a b a b a c a a b a c a
    ababa<mark>b</mark> X
    ababaca
                          How much should we shift the pattern?
         ababaca
    ababa<mark>c</mark> X
    ababaca
                          How much should we shift the pattern?
    ababaca
```

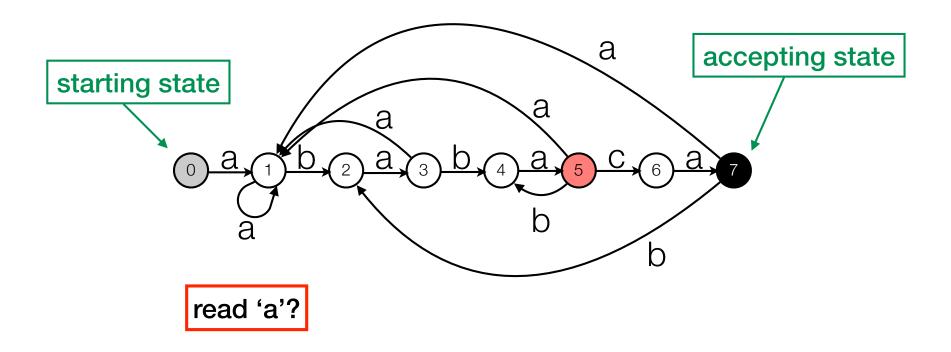
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P = ababaca.



• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P = ababaca.

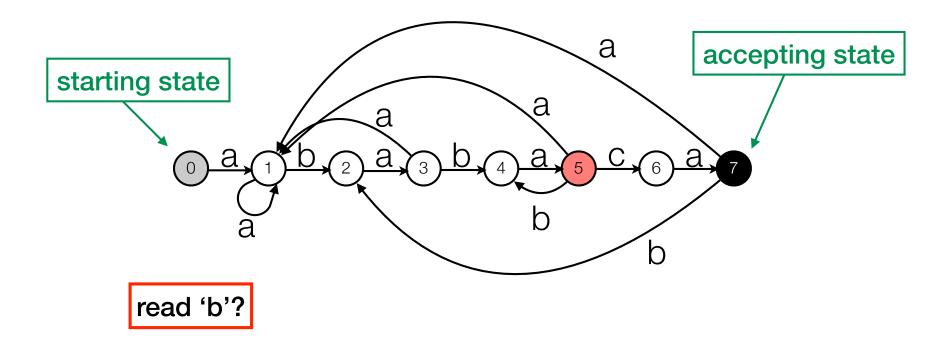


• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P = ababaca.



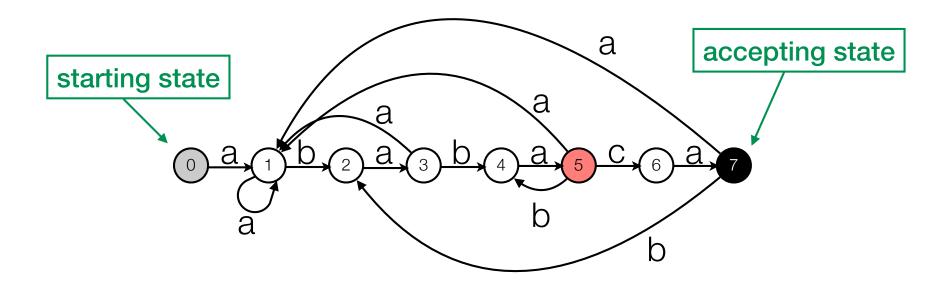
Matched until now: a b a b a a a a b a b a c a

• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P = ababaca.



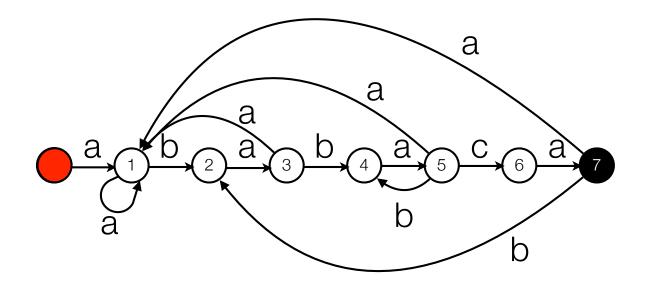
Matched until now: a b a b a b a b a c a

• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P = ababaca.



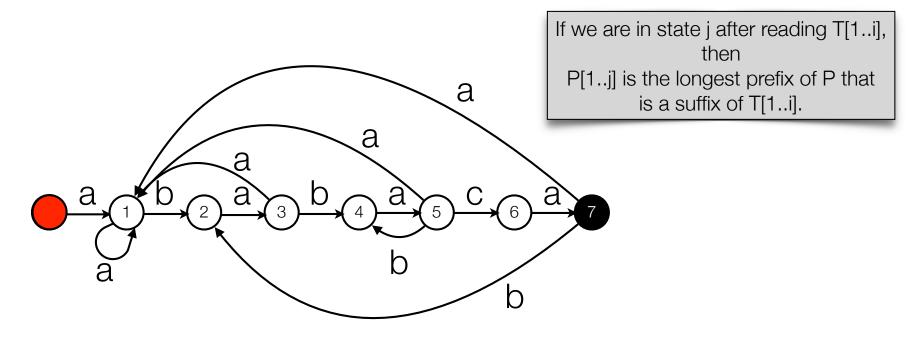
• State j: arc with character α goes to state i \leq j +1 such that P[1...i] is the longest prefix of P that is a suffix of $P[1...j] \cdot \alpha$.

• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P = ababaca.



T = b a c b a b a b a b a c a b

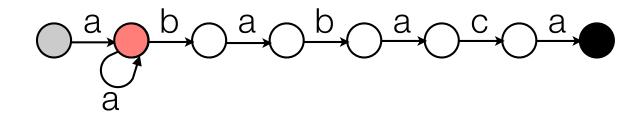
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P = ababaca.



T = b a c b a b a b a b a c a b

• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.

• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.

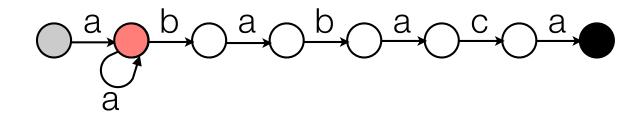


read 'a'?

longest prefix of P that is a proper suffix of 'aa' = 'a'

Matched until now: a a

• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.

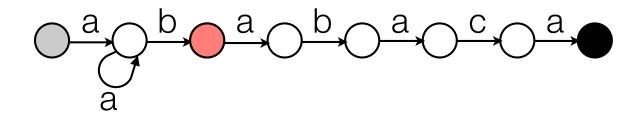


read 'c'?

longest prefix of P that is a proper suffix of 'ac' = ' '

Matched until now: a c

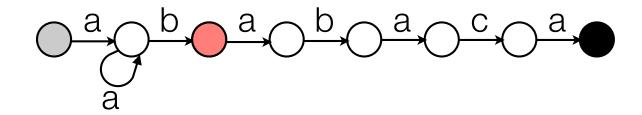
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'b'? Iongest prefix of P that is a proper suffix of 'abb' = ' '

Matched until now: a b b

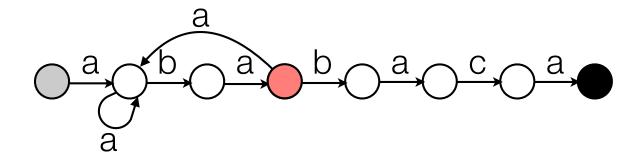
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'c'? | longest prefix of P that is a proper suffix of 'abc' = ' '

Matched until now: a b c

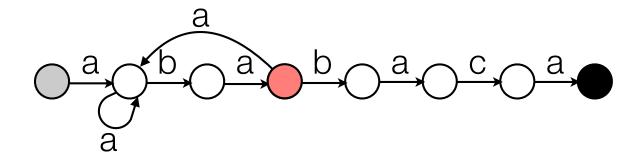
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'a'? | longest prefix of P that is a proper suffix of 'abaa' = 'a'

Matched until now: a b a a

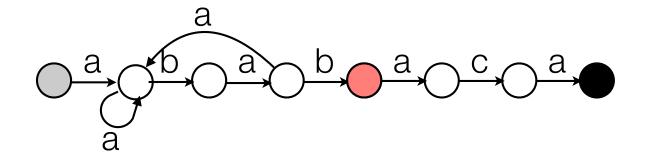
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'c'? Iongest prefix of P that is a proper suffix of 'abac' = ' '

Matched until now: a b a c

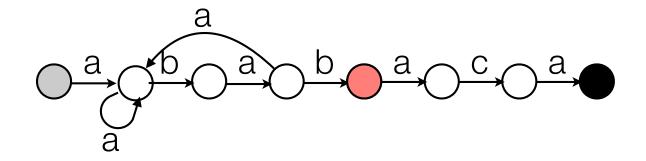
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'b'? | longest prefix of P that is a proper suffix of 'ababb' = ' '

Matched until now: a b a b b

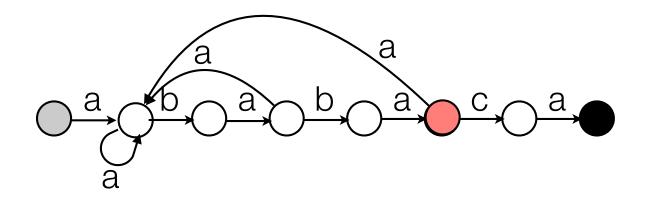
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'c'? | Iongest prefix of P that is a proper suffix of 'ababc' = ' '

Matched until now: a b a b c

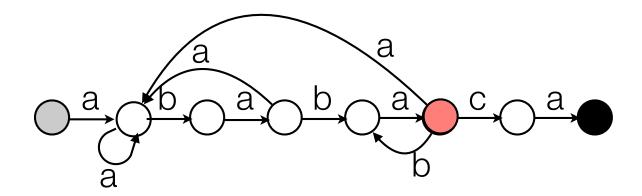
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'a'? | longest prefix of P that is a proper suffix of 'ababaa' = 'a'

Matched until now: a b a b a a

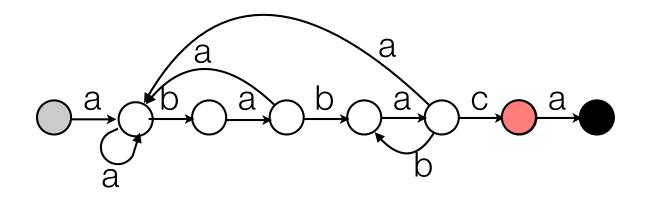
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'b'? Iongest prefix of P that is a proper suffix of 'ababaa' = 'abab'

Matched until now: a b a b a b

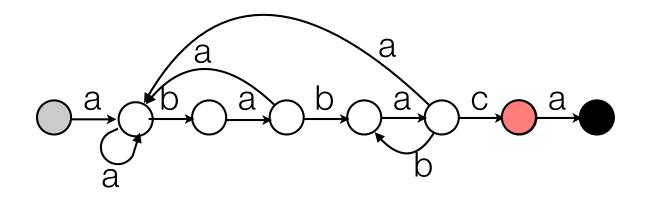
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'b'?

longest prefix of P that is a proper suffix of 'ababacb' = ' '

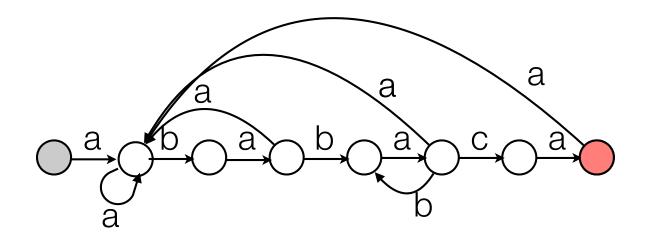
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'c'?

longest prefix of P that is a proper suffix of 'ababacc' = ' '

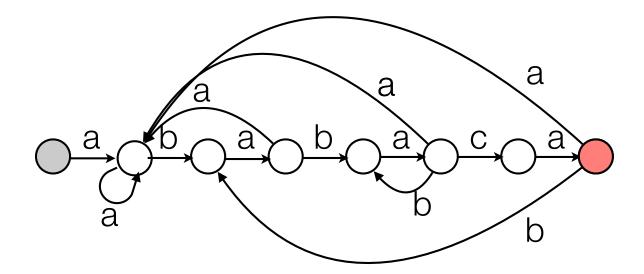
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'a'?

longest prefix of P that is a proper suffix of 'ababacaa' = 'a'

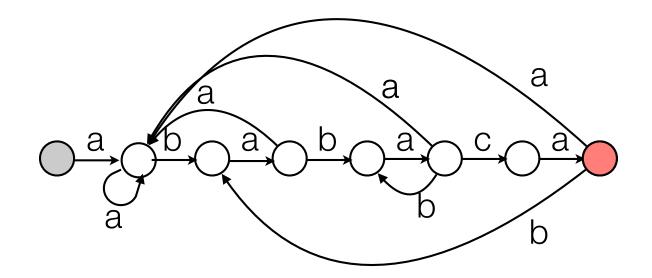
• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'b'?

longest prefix of P that is a proper suffix of 'ababacab' = 'ab'

• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P= ababaca.



read 'c'?

longest prefix of P that is a proper suffix of 'ababacac' = ' '

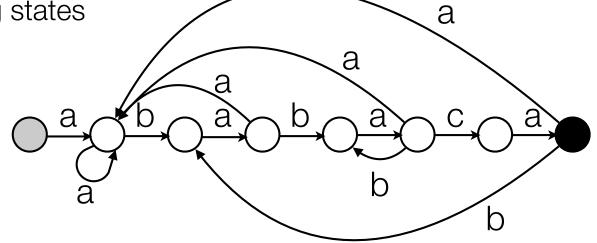
• Finite automaton:

- Q: finite set of states
- $q_0 \in Q$: start state

A ⊆ Q: set of accepting states

• Σ: finite input alphabet

δ: transition function

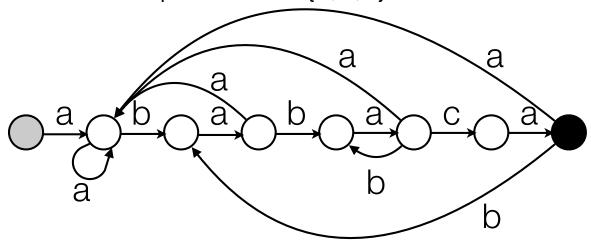


- Matching time: O(n)
- Preprocessing time: $O(m^3|\Sigma|)$. (Can be done in $O(m|\Sigma|)$).
- Total time: $O(n + m|\Sigma|)$

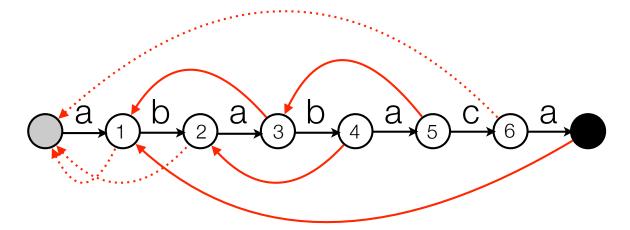
KMP

KMP

• Finite automaton: alphabet $\Sigma = \{a,b,c\}$. P = ababaca.

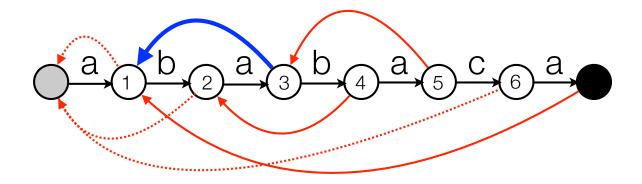


• KMP: Can be seen as finite automaton with *failure links*:



KMP

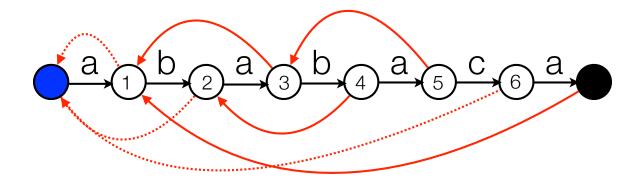
- KMP: Can be seen as finite automaton with failure links:
 - longest prefix of P that is a suffix of what we have matched until now (ignore the mismatched character).



longest prefix of P that is a proper suffix of 'aba'

KMP matching

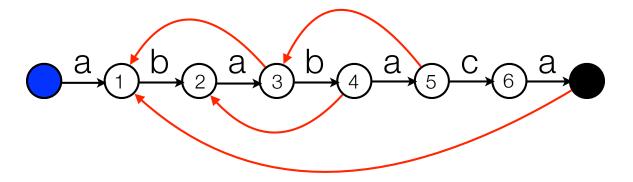
- KMP: Can be seen as finite automaton with failure links:
 - longest prefix of P that is a suffix of what we have matched until now.



T = bacbabababacab

KMP

- KMP: Can be seen as finite automaton with failure links:
 - longest prefix of P that is a proper suffix of what we have matched until now.
 - can follow several failure links when matching one character:



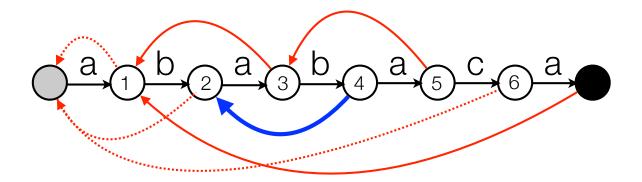
KMP Analysis

- Analysis. |T| = n, |P| = m.
 - How many times can we follow a forward edge?
 - How many backward edges can we follow (compare to forward edges)?
 - Total number of edges we follow?
 - What else do we use time for?

KMP Analysis

- Lemma. The running time of KMP matching is O(n).
 - Each time we follow a forward edge we read a new character of T.
 - #backward edges followed ≤ #forward edges followed ≤ n.
 - If in the start state and the character read in T does not match the forward edge, we stay there.
 - Total time = #non-matched characters in start state + #forward edges followed + #backward edges followed ≤ 2n.

 Failure link: longest prefix of P that is a proper suffix of what we have matched until now.



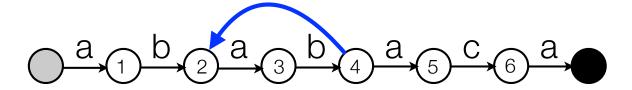
longest prefix of P that is a suffix of 'abab'

Matched until now: a b a b

ababaca

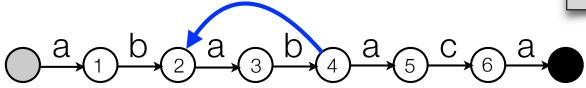
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a proper suffix of 'abab'



- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.

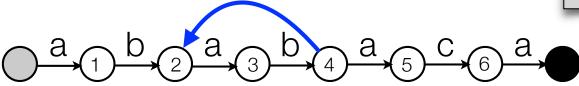
longest prefix of P that is a suffix of 'bab'



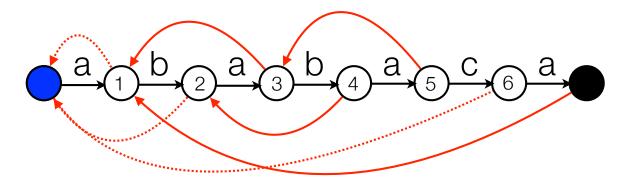
If we are in state j after reading T[1..i], then
P[1..j] is the longest prefix of P that is a suffix of T[1..i].

- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a suffix of 'bab'

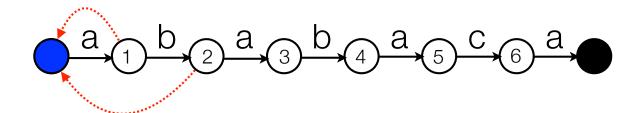


Can be found by using KMP to match 'bab'



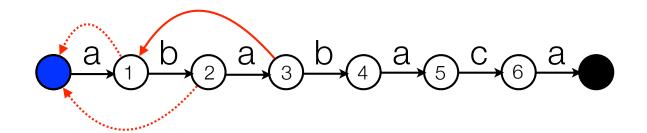
If we are in state j after reading T[1..i], then
P[1..j] is the longest prefix of P that is a suffix of T[1..i].

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.



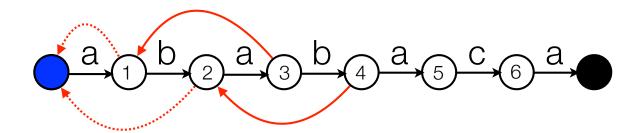
$$T = b$$

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

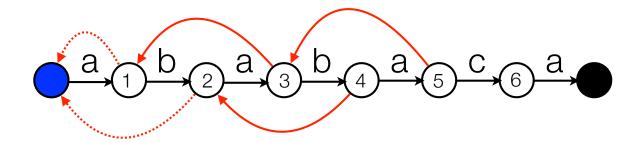


$$T = b a$$

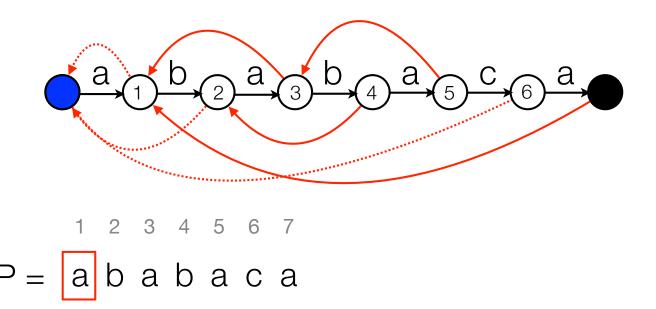
- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.



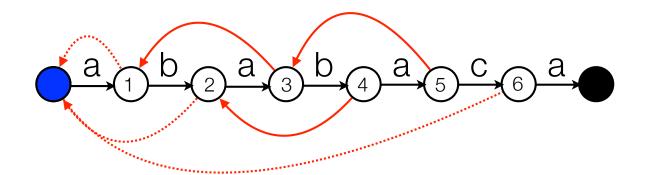
- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.



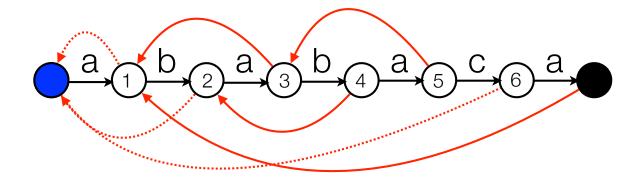
- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.



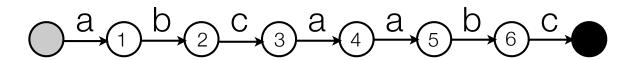
- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.



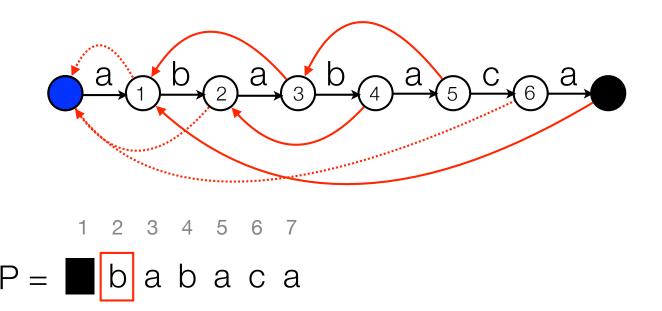
- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.



- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.



- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.



KMP

- Computing π : As KMP matching algorithm (only need π values that are already computed).
- Running time: O(n + m):
 - Lemma. Total number of comparisons of characters in KMP is at most 2n.
 - Corollary. Total number of comparisons of characters in the preprocessing of KMP is at most 2m.

KMP: the π array

- π array: A representation of the failure links.
- Takes up less space than pointers.

i	1	2	3	4	5	6	7
π[i]	0	0	1	2	3	0	1

