String Matching
Inge Li Gortz
CLRS 32

String Matching

- String matching problem:
- string T (text) and string P (pattern) over an alphabet Σ.
- $|T|=n,|P|=m$.
- Report all starting positions of occurrences of P in T.

$$
\begin{aligned}
& P=a b a b a c a \\
& T=b a c b a b a b a b a b a c a b
\end{aligned}
$$

String Matching

- Knuth-Morris-Pratt (KMP)
- Finite automaton

A naive string matching algorithm


```
a b a b a c a
    a b ab a c a
        a b a b a c a
            ababaca
            a b a b a c a
                a b a b a c a
                    a b a b a c a
                    ababaca
                    a b a b a c a
                    a b a b a c a
```

Improving the naive algorithm

```
P=aaababa
T=a a a b a a a b ab a b a c a b b
    a a a b a b a
    a a a b a b a
```

Finite Automaton

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

read ' a '?

Matched until now: a b a b a a

$$
a b a b a c a
$$

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

read 'b'?

Matched until now: a b a b a b
a b a b a c a

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

- State j: arc with character α goes to state $\mathrm{i} \leq \mathrm{j}+1$ such that $P[1 . . i]$ is the longest prefix of P that is a suffix of $P[1 \ldots j] \cdot \alpha$.

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

$T=b a c b a b a b a b a b a c a b$

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

$T=b a c b a b a b a b a b a c a b$

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $P=a b a b a c a$.

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

read ' a '? longest prefix of P that is a proper suffix of ' $a a^{\prime}=$ ' ' a '

Matched until now: a a
P: a b a b a c a

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $P=a b a b a c a$.

read ' c '? longest prefix of P that is a proper suffix of 'ac' $=$ ' '
Matched until now: a c
P: a b a b a c a

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $P=a b a b a c a$.

read ' c '? longest prefix of P that is a proper suffix of ' abc ' $=$ ' '
Matched until now: a b c
P: a b a b a c a

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $P=a b a b a c a$.

read ' a '? longest prefix of P that is a proper suffix of ' $a b a{ }^{\prime}=\mathrm{A} \mathrm{a}$

Matched until now: a b a a
$P: \quad a b a b a c a$

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $P=a b a b a c a$.

read 'b'? longest prefix of P that is a proper suffix of 'ababb' = '

Matched until now: abablab
P: a b a b a c a

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $P=a b a b a c a$.

read ' c '? longest prefix of P that is a proper suffix of 'abac' $=$ ' ' $^{\prime}$

Matched until now: a b a c
P: a b a b a c a

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $P=$ ababaca.

read ' c '? longest prefix of P that is a proper suffix of 'ababc' = ' '

Matched until now: ababc
P: ababaca

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

read ' a '? Iongest prefix of P that is a proper suffix of 'ababaa' = ' a '

Matched until now: $\mathrm{a} b \mathrm{a} \mathrm{b}$ a a
P: a b a b a c a

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

read 'b'?
longest prefix of P that is a proper suffix of 'ababacb' = ' '

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

read 'b'? longest prefix of P that is a proper suffix of 'ababaa' = 'abab'

Matched until now: a babab
P: a b a b a c a

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $P=a b a b a c a$.

read ' c '?
longest prefix of P that is a proper suffix of 'ababacc' $=$ ' '

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

read ' a '?
longest prefix of P that is a proper suffix of 'ababacaa' $=$ ' a '

Finite Automaton Construction

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $P=a b a b a c a$.

read ' b '? longest prefix of P that is a proper suffix of 'ababacab' = 'ab'

Finite Automaton

- Finite automaton:
- Q: finite set of states
- $q_{0} \in \mathrm{Q}$: start state
- $A \subseteq Q$: set of accepting states
- Σ : finite input alphabet
- δ : transition function
- Matching time: O(n)
- Preprocessing time: $O\left(m^{3}|\Sigma|\right)$. (Can be done in $O(m|\Sigma|)$).
- Total time: $\mathrm{O}(\mathrm{n}+\mathrm{m}|\Sigma|)$

| KMP |
| :--- | :--- |
| |
| |
| |
| |

KMP

- KMP: Can be seen as finite automaton with failure links:
- longest prefix of P that is a suffix of what we have matched until now (ignore the mismatched character).

longest prefix of P that is a proper suffix of 'aba'

KMP

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

- KMP: Can be seen as finite automaton with failure links:

KMP matching

- KMP: Can be seen as finite automaton with failure links:
- longest prefix of P that is a suffix of what we have matched until now.

$T=b a c b a b a b a b a b a c a b$

KMP

- KMP: Can be seen as finite automaton with failure links:
- longest prefix of P that is a proper suffix of what we have matched until now.
- can follow several failure links when matching one character:

$$
\mathrm{T}=\mathrm{a} \mathrm{~b} \text { a } \mathrm{b} \text { a a }
$$

KMP Analysis

- Lemma. The running time of KMP matching is $\mathrm{O}(\mathrm{n})$.
- Each time we follow a forward edge we read a new character of T.
- \#backward edges followed \leq \#forward edges followed $\leq \mathrm{n}$.
- If in the start state and the character read in T does not match the forward edge, we stay there.
- Total time = \#non-matched characters in start state + \#forward edges followed + \#backward edges followed $\leq 2 n$

KMP Analysis

- Analysis. $|T|=n,|P|=m$.
- How many times can we follow a forward edge?
- How many backward edges can we follow (compare to forward edges)?
- Total number of edges we follow?
-What else do we use time for?

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

Matched until now: $a b a b$
a b a b a c a

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.

$$
\text { longest prefix of } \mathrm{P} \text { that is a proper suffix of 'abab' }
$$

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.
longest prefix of P that is a suffix of 'bab'

Can be found by using KMP to match 'bab'

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.

If we are in state j after reading $T[1 . . i]$, $\mathrm{P}[1 . . \mathrm{j}]$ is the longest prefix of P that
is a suffix of T[1.

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed)
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

$T=b$

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

$T=b a$

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

$$
\mathrm{P}=\mathrm{b} \mathrm{a} \mathrm{~b} a
$$

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

$$
P=b a b
$$

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

$$
P=b a b a c
$$

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed)
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

$$
)^{a} \xrightarrow[\rightarrow]{(1)} \xrightarrow{b}(2) \xrightarrow{c}(3){ }^{a}(4) \xrightarrow{a}(5)^{b} \rightarrow(6)^{c}
$$

$$
P=a b c a a b c
$$

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

$$
P=b a b a c a
$$

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed)
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

KMP

- Computing π : As KMP matching algorithm (only need π values that are already computed).
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$:
- Lemma. Total number of comparisons of characters in KMP is at most 2 n .
- Corollary. Total number of comparisons of characters in the preprocessing of KMP is at most 2 m .

KMP: the π array

- π array: A representation of the failure links.
- Takes up less space than pointers.

i	1	2	3	4	5	6	7
$\pi[i]$	0	0	1	2	3	0	1

