Reading material

We will introduce the paradigm dynamic programming. You should read KT Section 6.1 and 6.2 . [w] on an exercise means it is a warmup exercise.

Exercises

1 [w] Weighted interval scheduling Solve the following weighted interval scheduling problem using both the recursive method with memoization and the iterative method. The intervals are given as triples $\left(s_{i}, f_{i}, v_{i}\right)$: $S=\{(1,7,4),(10,12,2),(2,5,3),(8,11,4),(12,13,3),(3,9,5),(3,4,3),(4,6,3),(5,8,2),(4,13,6)\}$.

2 Independent set on a path Solve KT 6.1. In 6.1 (c) you should both write the recurrence and also write pseudocode for both a top-down and a bottom-up algorithm finding the value of an optimal solution. Also explain how to find the nodes contained in maximum weight independent set.

3 Job planning Solve KT 6.2.

4 Office switching Solve KT 6.4.

5 Kattis exercise Solve Robots on a Grid on Kattis: https://open.kattis.com/problems/robotsonagrid. Before you start programming, first design an algorithm that solves the problem and analyse its running time.

6 Discrete Fréchet distance Consider Professor Bille going for a walk with his dog. The professor follows a path of points p_{1}, \ldots, p_{n} and the dog follows a path of points q_{1}, \ldots, q_{m}. We assume that the walk is partitioned into a number of small steps, where the professor and the dog in each step either both move from p_{i} tp p_{i+1} and from q_{j} to q_{j+1}, respectively, or only one of them moves and the other one stays.

The goal is to find the smallest possible length L of the leash, such that the professor and the dog can move from p_{1} and q_{1}, resp., to p_{n} and q_{n}. They cannot move backwards, and we only consider the distance between points. The distance L is also known as the discrete Fréchet distance.

We let $L(i, j)$ denote the smallest possible length of the leash, such that the professor and the dog can move from p_{1} and q_{1} to p_{i} and q_{j}, resp. For two points p and q, let $d(p, q)$ denote the distance between the them.

In the example below the dotted lines denote where Professor Bille (black nodes) and the dog (white nodes) are at time 1 to 8 . The minimum leash length is $L=d\left(p_{1}, q_{4}\right)$.

6.1 Give a recursive formula for $L(i, j)$.
6.2 Give pseudo code for an algorithm that computes the length of the shortest possible leash. Analyze space and time usage of your solution.
6.3 Extend your algorithm to print out paths for the professor and the dog. The algorithm must return where the professor and the dog is at each time step. Analyze the time and space usage of your solution.

