Lecture

At the lecture we will talk about string matching algorithms: the string matching automaton and and the Knuth-Morris-Pratt algorithm (KMP).

Exercises

1 [w] String Matching Automaton Construct the string-matching automaton for the pattern $P=a b c a b a$ and run the matching algorithm on both on the text string $T=a a a b c a b a b c a b b a a b c a b a a b$.

2 KMP Solve

2.1 [w] Compute the prefix function π for the pattern $P=a b c a b a$ and draw the corresponding automaton with failure links. Run the matching algorithm on the text string $T=a a a b c a b a b c a b b a a b c a b a a b$.
2.2 [w] Compute the prefix function π for the pattern $a b a b b a b b a b b a b a b b a b b$ when the alphabet is $\Sigma=\{a, b\}$ and draw the corresponding automaton with failure links.
2.3 Explain how to determine the occurrences of pattern P in the text T by examining the π function for the string $P \$ T$, where $\$$ is a new character not in the alphabet.

3 String matching with gaps In string matching with gaps the pattern P can contain a gap character \star that can match any string (of arbitrary length even length zero). An example of such a string is $P=a b \star a c \star a$, which occurs in the text $T=$ bababacbcca in two ways:

$\mathrm{T}:$	b	ab	ab	ac	bcc	a
$\mathrm{P}:$		ab	\star	ac	\star	a

or

T:	bab	ab		ac	bcc	a
$\mathrm{P}:$		ab	\star	ac	\star	a

There are no gap characters in the text-only in the pattern.
Give an algorithm to find an occurrence of a pattern P containing gap characters in a text T in time $O(n+m)$. That is, preprocessing time + matching time should be $O(n+m)$).

4 Christmas songs (exam 2015) You are putting together a set of Christmas songs that will be handed out at
 where " $_$" denotes a blank space. E.g. the song:

```
We
We
```



```
Dear
Dear_Dean
```

contains one occurrence of of the sentence "Merry Christmas $_{\checkmark}$ Dear $_{\checkmark}$ Dean" (line breaks are disregarded).
Formally, you are given a set S of songs S_{1}, \ldots, S_{k} and a sentence P. Song S_{i} contains n_{i} characters and P contains m characters. Let $n=\sum_{i=1}^{k} n_{i}$ denote the total number of characters in the songs. All the strings are over an alphabet of size $O(1)$. Describe an algorithm that returns all the songs that contain P. Analyze the asymptotic running time of your algorithm. Remember to argue that your algorithm is correct.

5 Cyclic strings A cyclic string of length n is a string in which character n is considered to precede character 1 . Example: The strings rc, arc, arca and carcar are all substrings of the cyclic string car.

Give an algorithm to determine whether a string P_{1} is a substring of a circular string P_{2}. Analyze the asymptotic running time of your algorithm. Remember to argue, that your algorithm is correct.

6 Preprocessing of the string matching automaton Give an efficient algorithm for computing the transition function δ for the string-matching automaton corresponding to a given pattern P. Your algorithm should run in time $O(m|\Sigma|)$. (Hint: Prove that $\delta(q, a)=\delta(\pi[q], a)$ if $q=m$ or $P[q+1] \neq a$.)

