Lecture

At the lecture we will talk about string matching algorithms: the string matching automaton and and the Knuth-Morris-Pratt algorithm (KMP).

Exercises

1 [*w*] **String Matching Automaton** Construct the string-matching automaton for the pattern P = abcaba and run the matching algorithm on both on the text string T = aaabcabaabcabbaabcabaab.

2 KMP Solve

or

- **2.1** [*w*] Compute the prefix function π for the pattern P = abcaba and draw the corresponding automaton with failure links. Run the matching algorithm on the text string T = aaabcabaabcabbaabcabaaab.
- **2.3** Explain how to determine the occurrences of pattern P in the text *T* by examining the π function for the string *P*\$*T*, where \$ is a new character not in the alphabet.

3 String matching with gaps In string matching with gaps the pattern *P* can contain a gap character \star that can match any string (of arbitrary length even length zero). An example of such a string is $P = ab \star ac \star a$, which occurs in the text T = bababacbcca in two ways:

T:	Ъ	ab	ab	ac	bcc	а
P:		ab	*	ac	*	а
T:	bab	ab		ac	bcc	а
P:		ab	*	ac	*	а

There are no gap characters in the text—only in the pattern.

Give an algorithm to find an occurrence of a pattern *P* containing gap characters in a text *T* in time O(n+m). That is, preprocessing time + matching time should be O(n+m).

4 Christmas songs (exam 2015) You are putting together a set of Christmas songs that will be handed out at the Christmas party. The Dean has declared that every song must contain the sentence "Merry_Christmas_Dear_Dean", where "_" denotes a blank space. E.g. the song:

We_wish_you_a_Merry_Christmas_ We_wish_you_a_Merry_Christmas_ We_wish_you_a_Merry_Christmas_ Dear_Dean_ Dear_Dean

contains one occurrence of of the sentence "Merry_Christmas_Dear_Dean" (line breaks are disregarded).

Formally, you are given a set *S* of songs S_1, \ldots, S_k and a sentence *P*. Song S_i contains n_i characters and *P* contains *m* characters. Let $n = \sum_{i=1}^k n_i$ denote the total number of characters in the songs. All the strings are over an alphabet of size O(1). Describe an algorithm that returns all the songs that contain *P*. Analyze the asymptotic running time of your algorithm. Remember to argue that your algorithm is correct.

5 Cyclic strings A cyclic string of length *n* is a string in which character *n* is considered to precede character 1. *Example:* The strings rc, arc, arca and carcar are all substrings of the cyclic string car.

Give an algorithm to determine whether a string P_1 is a substring of a *circular* string P_2 . Analyze the asymptotic running time of your algorithm. Remember to argue, that your algorithm is correct.

6 Preprocessing of the string matching automaton Give an efficient algorithm for computing the transition function δ for the string-matching automaton corresponding to a given pattern *P*. Your algorithm should run in time $O(m|\Sigma|)$. (Hint: Prove that $\delta(q, a) = \delta(\pi[q], a)$ if q = m or $P[q + 1] \neq a$.)