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Chapter 1

Partial Sums

In this chapter, we discuss data structures that allow us to efficiently process
range queries. In a range query, our task is to calculate a value based on a
subarray of an array. Typical range queries are:

* sumy(a,b): calculate the sum of values in range [a,b]
* ming(a,b): find the minimum value in range [a,b]
* maxq(a,d): find the maximum value in range [a,b]

For example, consider the range [3,6] in the following array:

In this case, sum(3,6) = 14.

A simple way to process sum queries is to use a loop that goes through all
array values in the range. For example, the following function can be used to
process sum queries on an array:

sum(a, b) {
s = 0;
for (int i = a; 1 <= b; i++) {
s += arrayl[il;
3

return s;

}

This function works in O(n) time, where n is the size of the array. Thus, we
can process q queries in O(nq) time using the function. However, if both » and ¢
are large, this approach is slow. Fortunately, it turns out that there are ways to
process sum queries much more efficiently.



1.1 Static range queries

We first focus on a situation where the array is static, i.e., the array values are
never updated between the queries. In this case, it suffices to construct a static
data structure that tells us the answer for any possible query.

Sum queries

We can easily process sum queries on a static array by constructing a prefix
sum array. Each value in the prefix sum array equals the sum of values in the
original array up to that position, i.e., the value at position % is sum(0,%). The
prefix sum array can be constructed in O(n) time.

For example, consider the following array:

0 1 2 3 4 5 6
1/3/4|8|6|1|4]|2

The corresponding prefix sum array is as follows:

0o 1 2 3 4 5 6 7
14|81]16(22|23|27|29

Since the prefix sum array contains all values of sum(0, %), we can calculate any
value of sum(a, b) in O(1) time as follows:

sum(a,b) = sum(0,b) — sum(0,a — 1)

By defining sum(0,—1) = 0, the above formula also holds when a = 0.
For example, consider the range [3,6]:

0 1 2 3 4 5 6
113486 |1|4 )2

In this case sumy(3,6) =8 +6+1+4 = 19. This sum can be calculated from two
values of the prefix sum array:

1/4|8|16(22|23|27 |29

Thus, sumy(3,6) = sumy(0,6) — sum,(0,2) =27 -8 = 19.

It is also possible to generalize this idea to higher dimensions. For example,
we can construct a two-dimensional prefix sum array that can be used to calculate
the sum of any rectangular subarray in O(1) time. Each sum in such an array
corresponds to a subarray that begins at the upper-left corner of the array.



The following picture illustrates the idea:
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The sum of the gray subarray can be calculated using the formula
S(A)-SB)-S(C)+SD),

where S(X) denotes the sum of values in a rectangular subarray from the upper-
left corner to the position of X.

Minimum queries

Minimum queries are more difficult to process than sum queries. Still, there is
a quite simple O(nlogn) time preprocessing method after which we can answer
any minimum query in O(1) timeﬂ Note that since minimum and maximum
queries can be processed similarly, we can focus on minimum queries.

The idea is to precalculate all values of ming(a,b) where b —a + 1 (the length
of the range) is a power of two. For example, for the array

0 1 2 3 4 5 6
13486 |1|4]|2

the following values are calculated:

a b ming(a,b) a b ming(a,d) a b ming(a,b)
0 0 1 0 1 1 0 3 1

1 1 3 1 2 3 1 4 3

2 2 4 2 3 4 2 5 1

3 3 8 3 4 6 3 6 1

4 4 6 4 5 1 4 7 1

5 5 1 5 6 1 0 7 1

6 6 4 6 7 2

7 7 2

The number of precalculated values is O(nlogn), because there are O(logn)
range lengths that are powers of two. The values can be calculated efficiently
using the recursive formula

ming(a,b) = min(ming(a,a +w —1),ming(a +w, b)),

IThis technique was introduced in [1] and sometimes called the sparse table method. There
are also more sophisticated techniques [6]] where the preprocessing time is only O(n), but such
algorithms are not needed in competitive programming.



where b —a +1 is a power of two and w = (b —a + 1)/2. Calculating all those values
takes O(nlogn) time.

After this, any value of ming(a,b) can be calculated in O(1) time as a minimum
of two precalculated values. Let & be the largest power of two that does not exceed
b —a+1. We can calculate the value of min,(a,b) using the formula

ming(a,b) = min(ming(a,a + k& —1),ming(b — &k +1,b)).

In the above formula, the range [a, b] is represented as the union of the ranges
[a,a+k—1] and [b -k +1,b], both of length %.
As an example, consider the range [1,6]:
o 1 2 3 4 5 6

1/3(4(8|6[]1|4]|2

The length of the range is 6, and the largest power of two that does not exceed 6
is 4. Thus the range [1,6] is the union of the ranges [1,4] and [3,6]:

o 1 2 3 4 5 6
1(3|4(8|6|1|4]|2

Since min,(1,4) = 3 and min,(3,6) = 1, we conclude that min,(1,6) = 1.

1.2 Fenwick tree

A binary indexed tree or a Fenwick treeE] can be seen as a dynamic variant
of a prefix sum array. It supports two O(logn) time operations on an array:
processing a range sum query and updating a value.

The advantage of a binary indexed tree is that it allows us to efficiently update
array values between sum queries. This would not be possible using a prefix sum
array, because after each update, it would be necessary to build the whole prefix
sum array again in O(n) time.

Structure

Even if the name of the structure is a Fenwick tree, it is usually represented as
an array. In this section we assume that all arrays are one-indexed, because it
makes the implementation easier.

Let p(k) denote the largest power of two that divides 2. We store a Fenwick
tree as an array tree such that

tree[k] = sumy(k — p(k)+ 1,k),

2The binary indexed tree structure was presented by P. M. Fenwick in 1994 [5].



i.e., each position % contains the sum of values in a range of the original array
whose length is p(k) and that ends at position k. For example, since p(6) =
tree[6] contains the value of sum(5,6).

For example, consider the following array:

1/3[4/8(6|1|4]2

The corresponding Fenwick tree is as follows:

1 2 3 4 5 6 7 8
1/4|4]16/6 |7 |4 |29

The following picture shows more clearly how each value in the Fenwick tree
corresponds to a range in the original array:
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Using a Fenwick tree, any value of sum(1, %) can be calculated in O(logn) time,
because a range [1,%] can always be divided into O(logn) ranges whose sums are
stored in the tree.

For example, the range [1,7] consists of the following ranges:

1 2 3 4 5 6 7 8
\1\4\4\16\6\7\4\29\

l l

Thus, we can calculate the corresponding sum as follows:
sum(1,7) = sum(1,4) + sum(5,6) + sum(7,7) =16+ 7 +4 = 27

To calculate the value of sum(a,b) where a > 1, we can use the same trick that
we used with prefix sum arrays:

sum(a, b) = sum(1,6) — sum(1,a —1).



Since we can calculate both sum(1,5) and sum(1,a — 1) in O(logn) time, the total
time complexity is O(logn).

Then, after updating a value in the original array, several values in the binary
indexed tree should be updated. For example, if the value at position 3 changes,
the sums of the following ranges change:

4
16

29

Since each array element belongs to O(logn) ranges in the binary indexed
tree, it suffices to update O(logn) values in the tree.

Implementation

The operations of a Fenwick tree can be efficiently implemented using bit opera-
tions. The key fact needed is that we can calculate any value of p(k) using the
formula

p(k) = k& —F.

The following function calculates the value of sum(1,k):

sum(k) {
s = 0;
while (k >= 1) {
s += treel[k];
k -= k&-k;
3
return s;
}

The following function increases the array value at position £ by x (x can be
positive or negative):

add(k, x) {
while (k <= n) {
treel[k] += x;
k += k&-k;
3
}

The time complexity of both the functions is O(logn), because the functions
access O(logn) values in the Fenwick tree, and each move to the next position
takes O(1) time.



1.3 Segment tree

A segment treeﬂ is a data structure that supports two operations: processing
a range query and updating an array value. Segment trees can support sum
queries, minimum and maximum queries and many other queries so that both
operations work in O(logn) time.

Compared to a Fenwick tree, the advantage of a segment tree is that it is
a more general data structure. While binary indexed trees only support sum
querieﬂ segment trees also support other queries. On the other hand, a segment
tree requires more memory and is a bit more difficult to implement.

Structure

A segment tree is a binary tree such that the nodes on the bottom level of the
tree correspond to the array elements, and the other nodes contain information
needed for processing range queries.

In this section, we assume that the size of the array is a power of two and
zero-based indexing is used, because it is convenient to build a segment tree for
such an array. If the size of the array is not a power of two, we can always append
extra elements to it.

We will first discuss segment trees that support sum queries. As an example,
consider the following array:

The corresponding segment tree is as follows:

Each internal tree node corresponds to an array range whose size is a power
of two. In the above tree, the value of each internal node is the sum of the
corresponding array values, and it can be calculated as the sum of the values of
its left and right child node.

3The bottom-up-implementation in this chapter corresponds to that in [9]. Similar structures
were used in late 1970’s to solve geometric problems [3].

4In fact, using two binary indexed trees it is possible to support minimum queries [4], but this
is more complicated than to use a segment tree.



It turns out that any range [a, b] can be divided into O(logn) ranges whose
values are stored in tree nodes. For example, consider the range [2,7]:

2 3 4 5 6
6|32 |7|2]|6

9}
(0]

Here sum(2,7)=6+3+2+7+2+6 = 26. In this case, the following two tree nodes
correspond to the range:

8|63 2|72

Ot

(op}

Thus, another way to calculate the sum is 9+ 17 = 26.

When the sum is calculated using nodes located as high as possible in the
tree, at most two nodes on each level of the tree are needed. Hence, the total
number of nodes is O(logn).

After an array update, we should update all nodes whose value depends on
the updated value. This can be done by traversing the path from the updated
array element to the top node and updating the nodes along the path.

The following picture shows which tree nodes change if the array value 7

changes:

The path from bottom to top always consists of O(logn) nodes, so each update
changes O(logn) nodes in the tree.

Implementation

We store a segment tree as an array of 2n elements where n is the size of the
original array and a power of two. The tree nodes are stored from top to bottom:

10



tree[1] is the top node, tree[2] and tree[3] are its children, and so on. Finally,
the values from tree[n] to tree[2n — 1] correspond to the values of the original
array on the bottom level of the tree.

For example, the segment tree

is stored as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
39(22/17/13|9 19 (8|5|8|6|3|2|7|2]|6

Using this representation, the parent of tree[k] is tree[|k/2]], and its children
are tree[2k] and tree[2k + 1]. Note that this implies that the position of a node
is even if it is a left child and odd if it is a right child.

The following function calculates the value of sum(a, d):

sum(a, b) {
a +t=n; b += n;
s = 0;

while (a <= b) {
if (a%2 == 1) s += treel[a++];
if (b%2 == @) s += tree[b--7;
a/=2;b /=2

3

return s;

}

The function maintains a range that is initially [a + n,b + n]. Then, at each step,
the range is moved one level higher in the tree, and before that, the values of the
nodes that do not belong to the higher range are added to the sum.

The following function increases the array value at position £ by x:

add(k, x) {
k += n;
tree[k] += x;
for (k /= 2; k>=1; k /=2) {
tree[k] = tree[2*k]+tree[2*k+1];
3

11



First the function updates the value at the bottom level of the tree. After this,
the function updates the values of all internal tree nodes, until it reaches the top
node of the tree.

Both the above functions work in O(logn) time, because a segment tree of n
elements consists of O(logn) levels, and the functions move one level higher in
the tree at each step.

Other queries

Segment trees can support all range queries where it is possible to divide a range
into two parts, calculate the answer separately for both parts and then efficiently
combine the answers. Examples of such queries are minimum and maximum,
greatest common divisor, and bit operations and, or and xor.

For example, the following segment tree supports minimum queries:

(9}
oo
(o7}
w
—
3
DN
(o2}

In this case, every tree node contains the smallest value in the corresponding
array range. The top node of the tree contains the smallest value in the whole
array. The operations can be implemented like previously, but instead of sums,
minima are calculated.

The structure of a segment tree also allows us to use binary search for locating
array elements. For example, if the tree supports minimum queries, we can find
the position of an element with the smallest value in O(logn) time.

For example, in the above tree, an element with the smallest value 1 can be
found by traversing a path downwards from the top node:

12



1.4 Additional techniques

Range updates

So far, we have implemented data structures that support range queries and
updates of single values. Let us now consider an opposite situation, where we
should update ranges and retrieve single values. We focus on an operation that
increases all elements in a range [a,b] by x.

Surprisingly, we can use the data structures presented in this chapter also in
this situation. To do this, we build a difference array whose values indicate the
differences between consecutive values in the original array. Thus, the original
array is the prefix sum array of the difference array. For example, consider the
following array:

The difference array for the above array is as follows:

2 3 4 5 6
3/0(-2/0|0]4|-30

For example, the value 2 at position 6 in the original array corresponds to the
sum 3 —2+4 -3 =2 in the difference array.

The advantage of the difference array is that we can update a range in the
original array by changing just two elements in the difference array. For example,
if we want to increase the original array values between positions 1 and 4 by 5, it
suffices to increase the difference array value at position 1 by 5 and decrease the
value at position 5 by 5. The result is as follows:

2 3 4 5 6
3/5|-2,0/(0|-1/-3]0

More generally, to increase the values in range [a,b] by x, we increase the
value at position a by x and decrease the value at position b +1 by x. Thus, it is
only needed to update single values and process sum queries, so we can use a
binary indexed tree or a segment tree.

A more difficult problem is to support both range queries and range updates.
In Chapter 28 we will see that even this is possible.

13
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Chapter 2

Dynamic Arrays

In this chapter, we discuss a data structure that allow us to efficiently maintain
dynamic array A[O,...,n —1] of integers under the following operations.

e Access(i): return Ali].

* Insert(i,x): insert a new entry with value x immediately to the left of
entry i.

® Delete(i): remove entry i.

For example, consider the range the following array:

0 1 2 3 4 5 6 7
1/3(8]4|6|1|3]|4

After Insert(3,7) the array looks like this:

0 1 2 3 4 5 6 17 8
1138|746 |1|3 |4

And now performing a Delete(2) on the array gives us the following array:

0 1 2 3 4 5 6 7
1(3(7]4]|6]1|3]|4

A simple way to solve this problem is to maintain the array A explicitly:

Access(i){
return A[i]

}

Insert(i, x) {
Shift all elements to the right of entry i-1 to the right by 1.
Set A[i] = x

15



Delete(i) {
Shift all elements to the right of entry i to the left by 1

3

This gives us O(1) for time Access and O(n —i +1) = O(n) for Insert and Delete.

2.1 Balanced binary tree

By maintaining a balanced binary tree on A on the array with elements of the
array as leaves we can get fast queries and updates. Each node stores the number
of elements in subtree.

For example, consider the following array:

0o 1 2 3 4 5 6
5|86 |3 |2|7|2|6

The corresponding binary tree is as follows:

5|86 |3 |2|7|2|6

After Insert(3,7) the tree looks as follows:

To perform Acces(j) traverse the path from the root to leaf j. Use the numbers
in the nodes to navigate to the right leaf. Insert(i,x) is done by inserting a new
leaf to the right of leaf i and updating the tree. Similarly, for a Delete(i) find the
ith leaf, delete it and update the tree. If implemented using a 2-3-4 tree or a
red-black tree all operations take O(logn) time.

16



2.2 2-level rotated arrays

Using a 2-level rotated array, we can get access in constant time, insert and
delete in O(y/n) time, while using linear space.

Rotated Arrays

In a rotated array we maintain a circular shift of the array by saving an offset A.
The offset marks the first position of the array and we can access element i by
returning A[A +i mod ¢], where ¢ is the length of the array.

For example the rotated array, which has offset 2 =3

corresponds to the array

We can now easily insert or delete in the ends. Delete(7) gives us the rotated
array

If we save both a head A (start of the list) and a tail ¢ (end of the list) we can
insert and delete in the ends in constant time. If we double the array size and
rebuild when the array is full and half the size and rebuild when the array is
a quarter full we get insertions and deletions in the end in amortized constant
time. But inserting or deleting at an arbitrary position in the array still takes
0(¢) = O(n) timd}

In the next section we will see how to get a better insertion and deletion time
by constructing a 2-level rotated array.

IThis was introduced as the 1-tiered vector in [2]. For more details and proofs see the paper.
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2-Level Rotated Arrays

In a 2-level rotated arrayﬂ we store \/n rotated arrays Ry,...,R /n—1 With capacity
vn. The last rotated array may have empty spots. The first rotated array R,
holds the first v/n elements, and in general rotated array R; holds element i - /n
to(i+1)-v/n-1.

For example, the rotated array

7 8 9 10 11 12 13 14 15
3,586 (2|7[2|6|3|2|1|1|4,5|2|~

The following function computes the value of Access(i) in constant time: Let

q=vn.

Access(i) {
r=1i/q
k =1 mod q
return element k in the rotated array r

Insertions To perform an Insert(i,x) we compute r and £ as in Access. Then
we rebuild R, with the new entry inserted and propagate the overflow to R, 1
recursively.

For example, to perform Insert(6,9) on the following 2-level rotated array

58|63 4171216 21|53 2| -4 |5
we first rebuild R4
58|63 71219 ]|6 21|53 2(—-14|5

and then propagate the overflow by inserting the previous last element of R
namely 4 at the first position in Ry. This causes the element 5 to overflow, so we
insert 5 at the first position in R3. We end up with the following 2-level rotated
array.

2The 2-level rotated array was introduced as a 2-tiered vector in [2].

18



We rebuild one of the rotating arrays. This takes O(y/n) time. In the rest of
the at most O(y/n) rotating arrays we use constant time to insert a new element
in the beginning. Thus the time complexity of Insert is O(\/n).

Deletions To perform an Delete(i) we compute r and % as in Access. Then
we rebuild R, with the entry £ deleted and propagate the underflow to R,
recursively.

For example, to perform Delete(5) on the following 2-level rotated array

58|63 4171216 21|53 2| - 14|56
we first rebuild R4
58|63 7164~ 211|153 2| —14|5

and then propagate the underflow by moving the first element of Ry to the
last position in R and the first element in R3 to the last position in Ro.

| | |
slefefs] |7lefels] |2u]s|a] [2]|"]s]

We rebuild one of the rotating arrays in O(y/n) time. In the rest of the at most
O(y/n) rotating arrays we use constant time to insert a new element in the end
and delete one from the beginning. Thus the time complexity of Delete is O(y/n).
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